Distinct Interaction Mechanism of RNAP and ResD and Distal Subsites for Transcription Activation of Nitrite Reductase in Bacillus subtilis ψ

2021 ◽  
Author(s):  
Hannah Jacob ◽  
Hao Geng ◽  
Dasvit Shetty ◽  
Nathan Halow ◽  
Linda J. Kenney ◽  
...  

The ResD-ResE signal transduction system plays a pivotal role in anaerobic nitrate respiration in Bacillus subtilis . The nasD operon encoding nitrite reductase is essential for nitrate respiration and is tightly controlled by the ResD response regulator. To understand the mechanism of ResD-dependent transcription activation of the nasD operon, we explored ResD-RNA polymerase (RNAP), ResD-DNA, and RNAP-DNA interactions required for nasD transcription. Full transcriptional activation requires the upstream promoter region where five molecules of ResD bind. The distal ResD-binding subsite at −87 to −84 partially overlaps a sequence similar to the consensus distal subsite of the upstream (UP) element with which the Escherichia coli C-terminal domain of the α subunit (αCTD) of RNAP interacts to stimulate transcription. We propose that interaction between αCTD and ResD at the promoter-distal site is essential for stimulating nasD transcription. Although nasD has an extended −10 promoter, it lacks a reasonable −35 element. Genetic analysis and structural simulations predicted that the absence of the −35 element might be compensated by interactions between σ A and αCTD, and between αCTD and ResD at the promoter-proximal ResD-binding subsite. Thus, our work suggested that ResD likely participates in nasD transcription activation by binding to two αCTD subunits at the proximal and distal promoter sites, representing a unique configuration for transcription activation. IMPORTANCE A significant number of ResD-controlled genes have been identified and transcription regulatory pathways in which ResD participates have emerged. Nevertheless, the mechanism of how ResD activates transcription of different genes in a nucleotide sequence-specific manner has been less explored. This study suggested that among the five ResD-binding subsites in the promoter of the nasD operon, the promoter-proximal and -distal ResD-binding subsites play important roles in nasD activation by adapting different modes of protein-protein and protein-DNA interactions. The finding of a new-type of protein-promoter architecture provides insight into the understanding of transcription activation mechanisms controlled by transcription factors including the ubiquitous response regulators of two-component regulatory systems particularly in Gram-positive bacteria.

1998 ◽  
Vol 180 (20) ◽  
pp. 5344-5350 ◽  
Author(s):  
Michiko M. Nakano ◽  
Tamara Hoffmann ◽  
Yi Zhu ◽  
Dieter Jahn

ABSTRACT The nitrate and nitrite reductases of Bacillus subtilishave two different physiological functions. Under conditions of nitrogen limitation, these enzymes catalyze the reduction of nitrate via nitrite to ammonia for the anabolic incorporation of nitrogen into biomolecules. They also function catabolically in anaerobic respiration, which involves the use of nitrate and nitrite as terminal electron acceptors. Two distinct nitrate reductases, encoded bynarGHI and nasBC, function in anabolic and catabolic nitrogen metabolism, respectively. However, as reported herein, a single NADH-dependent, soluble nitrite reductase encoded by the nasDE genes is required for both catabolic and anabolic processes. The nasDE genes, together with nasBC(encoding assimilatory nitrate reductase) and nasF(required for nitrite reductase siroheme cofactor formation), constitute the nas operon. Data presented show that transcription of nasDEF is driven not only by the previously characterized nas operon promoter but also from an internal promoter residing between the nasC andnasD genes. Transcription from both promoters is activated by nitrogen limitation during aerobic growth by the nitrogen regulator, TnrA. However, under conditions of oxygen limitation,nasDEF expression and nitrite reductase activity were significantly induced. Anaerobic induction of nasDEFrequired the ResDE two-component regulatory system and the presence of nitrite, indicating partial coregulation of NasDEF with the respiratory nitrate reductase NarGHI during nitrate respiration.


2004 ◽  
Vol 186 (6) ◽  
pp. 1694-1704 ◽  
Author(s):  
Avanti Baruah ◽  
Brett Lindsey ◽  
Yi Zhu ◽  
Michiko M. Nakano

ABSTRACT The Bacillus subtilis ResD-ResE two-component regulatory system activates genes involved in nitrate respiration in response to oxygen limitation or nitric oxide (NO). The sensor kinase ResE activates the response regulator ResD through phosphorylation, which then binds to the regulatory region of genes involved in anaerobiosis to activate their transcription. ResE is composed of an N-terminal signal input domain and a C-terminal catalytic domain. The N-terminal domain contains two transmembrane subdomains and a large extracytoplasmic loop. It also has a cytoplasmic PAS subdomain between the HAMP linker and C-terminal kinase domain. In an attempt to identify the signal-sensing subdomain of ResE, a series of deletions and amino acid substitutions were generated in the N-terminal domain. The results indicated that cytoplasmic ResE lacking the transmembrane segments and the extracytoplasmic loop retains the ability to sense oxygen limitation and NO, which leads to transcriptional activation of ResDE-dependent genes. This activity was eliminated by the deletion of the PAS subdomain, demonstrating that the PAS subdomain participates in signal reception. The study also raised the possibility that the extracytoplasmic region may serve as a second signal-sensing subdomain. This suggests that the extracytoplasmic region could contribute to amplification of ResE activity leading to the robust activation of genes required for anaerobic metabolism in B. subtilis.


2004 ◽  
Vol 186 (7) ◽  
pp. 2028-2037 ◽  
Author(s):  
Hao Geng ◽  
Shunji Nakano ◽  
Michiko M. Nakano

ABSTRACT The expression of genes involved in nitrate respiration in Bacillus subtilis is regulated by the ResD-ResE two-component signal transduction system. The membrane-bound ResE sensor kinase perceives a redox-related signal(s) and phosphorylates the cognate response regulator ResD, which enables interaction of ResD with ResD-dependent promoters to activate transcription. Hydroxyl radical footprinting analysis revealed that ResD tandemly binds to the −41 to −83 region of hmp and the −46 to −92 region of nasD. In vitro runoff transcription experiments showed that ResD is necessary and sufficient to activate transcription of the ResDE regulon. Although phosphorylation of ResD by ResE kinase greatly stimulated transcription, unphosphorylated ResD, as well as ResD with a phosphorylation site (Asp57) mutation, was able to activate transcription at a low level. The D57A mutant was shown to retain the activity in vivo to induce transcription of the ResDE regulon in response to oxygen limitation, suggesting that ResD itself, in addition to its activation through phosphorylation-mediated conformation change, senses oxygen limitation via an unknown mechanism leading to anaerobic gene activation.


1998 ◽  
Vol 180 (14) ◽  
pp. 3584-3591 ◽  
Author(s):  
Janet K. Hatt ◽  
Philip Youngman

ABSTRACT The transcription factor Spo0A of Bacillus subtilis has the unique ability to activate transcription from promoters that require different forms of RNA polymerase holoenzyme. One class of Spo0A-activated promoter, which includes spoIIEp, is recognized by RNA polymerase associated with the primary sigma factor, sigma A (ςA); the second, which includesspoIIAp, is recognized by RNA polymerase associated with an early-sporulation sigma factor, sigma H (ςH). Evidence suggests that Spo0A probably interacts directly with RNA polymerase to activate transcription from these promoters. To identify residues of Spo0A that may be involved in transcriptional activation, we used PCR mutagenesis of the entire spo0A gene and designed a screen using two distinguishable reporter fusions, spoIIE-gus andspoIIA-lacZ. Here we report the identification and characterization of five mutants of Spo0A that are specifically defective in activation of ςA-dependent promoters while maintaining activation of ςH-dependent promoters. These five mutants identify a 14-amino-acid segment of Spo0A, from residue 227 to residue 240, that is required for transcriptional activation of ςA-dependent promoters. This region may define a surface or domain of Spo0A that makes direct contacts with ςA-associated holoenzyme.


2021 ◽  
Author(s):  
Wenpeng Zhu ◽  
Manyu Zhang ◽  
Jianyi Li ◽  
Hewen Zhao ◽  
Kezhong Zhang ◽  
...  

Abstract BackgroundAcer rubrum L. is a colorful ornamental tree with great economic value. Because this tree is difficult to root under natural conditions and the seedling survival rate is low, vegetative propagation methods are often used. Because the formation of adventitious roots (ARs) is essential for the survival of asexual propagation of A. rubrum, it is necessary to investigate the molecular regulatory mechanisms in the formation of ARs of A. ruburm. To address this knowledge gap, we sequenced the transcriptome and sRNA of the A. rubrum variety ‘Autumn Fantasy’ using high-throughput sequencing and explored changes in gene and microRNA (miRNA) expression in response to exogenous auxin treatment. ResultsWe identified 82,468 differentially expressed genes between the treated and untreated ARs, as well as 48 known and 95 novel miRNAs. We also identified 172 target genes of the known miRNAs using degradome sequencing. Two regulatory pathways (ubiquitin mediated proteolysis and plant hormone signal transduction), Ar-miR160a and the target gene ArARF10 were shown to be involved in the auxin response. We further investigated the expression patterns and regulatory roles of ArARF10 through subcellular localization, transcriptional activation, plant transformation, qRT-PCR analysis, and GUS staining. ConclusionsDifferential expression patterns indicated the Ar-miR160a-ArARF10 interaction might play a significant role in the regulation of AR formation in A. rubrum. Our study provided new insights into mechanisms underlying the regulation of AR formation in A. rubrum.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mario Frezzini ◽  
Leonardo Guidoni ◽  
Stefano Pascarella

AbstractGabR from Bacillus subtilis is a transcriptional regulator of the MocR subfamily of GntR regulators. The MocR architecture is characterized by the presence of an N-terminal winged-Helix-Turn-Helix domain and a C-terminal domain folded as the pyridoxal 5′-phosphate (PLP) dependent aspartate aminotransferase (AAT). The two domains are linked by a peptide bridge. GabR activates transcription of genes involved in γ-amino butyrate (GABA) degradation upon binding of PLP and GABA. This work is aimed at contributing to the understanding of the molecular mechanism underlying the GabR transcription activation upon GABA binding. To this purpose, the structure of the entire GabR dimer with GABA external aldimine (holo-GABA) has been reconstructed using available crystallographic data. The structure of the apo (without any ligand) and holo (with PLP) GabR forms have been derived from the holo-GABA. An extensive 1 μs comparative molecular dynamics (MD) has been applied to the three forms. Results showed that the presence of GABA external aldimine stiffens the GabR, stabilizes the AAT domain in the closed form and couples the AAT and HTH domains dynamics. Apo and holo GabR appear more flexible especially at the level of the HTH and linker portions and small AAT subdomain.


Sign in / Sign up

Export Citation Format

Share Document