scholarly journals Five Genes Encoding Surface-Exposed LPXTG Proteins Are Enriched in Hospital-Adapted Enterococcus faecium Clonal Complex 17 Isolates

2007 ◽  
Vol 189 (22) ◽  
pp. 8321-8332 ◽  
Author(s):  
Antoni P. A. Hendrickx ◽  
Willem J. B. van Wamel ◽  
George Posthuma ◽  
Marc J. M. Bonten ◽  
Rob J. L. Willems

ABSTRACT Most Enterococcus faecium isolates associated with hospital outbreaks and invasive infections belong to a distinct genetic subpopulation called clonal complex 17 (CC17). It has been postulated that the genetic evolution of CC17 involves the acquisition of various genes involved in antibiotic resistance, metabolic pathways, and virulence. To gain insight into additional genes that may have favored the rapid emergence of this nosocomial pathogen, we aimed to identify surface-exposed LPXTG cell wall-anchored proteins (CWAPs) specifically enriched in CC17 E. faecium. Using PCR and Southern and dot blot hybridizations, 131 E. faecium isolates (40 CC17 and 91 non-CC17) were screened for the presence of 22 putative CWAP genes identified from the E. faecium TX0016 genome. Five genes encoding LPXTG surface proteins were specifically enriched in E. faecium CC17 isolates. These five LPXTG surface protein genes were found in 28 to 40 (70 to 100%) of CC17 and in only 7 to 24 (8 to 26%) of non-CC17 isolates (P < 0.05). Three of these CWAP genes clustered together on the E. faecium TX0016 genome, which may comprise a novel enterococcal pathogenicity island covering E. faecium contig 609. Expression at the mRNA level was demonstrated, and immunotransmission electron microscopy revealed an association of the five LPXTG surface proteins with the cell wall. Minimal spanning tree analysis based on the presence and absence of 22 CWAP genes revealed grouping of all 40 CC17 strains together with 18 hospital-derived but evolutionary unrelated non-CC17 isolates in a distinct CWAP-enriched cluster, suggesting horizontal transfer of CWAP genes and a role of these CWAPs in hospital adaptation.

2009 ◽  
Vol 77 (11) ◽  
pp. 5097-5106 ◽  
Author(s):  
Antoni P. A. Hendrickx ◽  
Miranda van Luit-Asbroek ◽  
Claudia M. E. Schapendonk ◽  
Willem J. B. van Wamel ◽  
Johanna C. Braat ◽  
...  

ABSTRACT Hospital-acquired Enterococcus faecium isolates responsible for nosocomial outbreaks and invasive infections are enriched in the orf2351 and orf2430 genes, encoding the SgrA and EcbA LPXTG-like cell wall-anchored proteins, respectively. These two surface proteins were characterized to gain insight into their function, since they may have favored the rapid emergence of this nosocomial pathogen. We are the first to identify a surface adhesin among bacteria (SgrA) that binds to the extracellular matrix molecules nidogen 1 and nidogen 2, which are constituents of the basal lamina. EcbA is a novel E. faecium MSCRAMM (microbial surface component recognizing adhesive matrix molecules) that binds to collagen type V. In addition, both SgrA and EcbA bound to fibrinogen; however, SgrA targeted the alpha and beta chains, whereas EcbA bound to the gamma chain of fibrinogen. An E. faecium sgrA insertion mutant displayed reduced binding to both nidogens and fibrinogen. SgrA did not mediate binding of E. faecium cells to biotic materials, such as human intestinal epithelial cells, human bladder cells, and kidney cells, while this LPXTG surface adhesin is implicated in E. faecium biofilm formation. The acm and scm genes, encoding two other E. faecium MSCRAMMs, were expressed at the mRNA level together with sgrA during all phases of growth, whereas ecbA was expressed only in exponential and late exponential phase, suggesting orchestrated expression of these adhesins. Expression of these surface proteins, which bind to extracellular matrix proteins and are involved in biofilm formation (SgrA), may contribute to the pathogenesis of hospital-acquired E. faecium infections.


2015 ◽  
Vol 28 (1) ◽  
pp. 55-68 ◽  
Author(s):  
Carmen Ruiz-Roldán ◽  
Yolanda Pareja-Jaime ◽  
José Antonio González-Reyes ◽  
M. Isabel G. Roncero

Previous studies have demonstrated the essential role of morphogenetic regulation in Fusarium oxysporum pathogenesis, including processes such as cell-wall biogenesis, cell division, and differentiation of infection-like structures. We identified three F. oxysporum genes encoding predicted transcription factors showing significant identities to Magnaporthe oryzae Con7p, Con7-1, plus two identical copies of Con7-2. Targeted deletion of con7-1 produced nonpathogenic mutants with altered morphogenesis, including defects in cell wall structure, polar growth, hyphal branching, and conidiation. By contrast, simultaneous inactivation of both con7-2 copies caused no detectable defects in the resulting mutants. Comparative microarray-based gene expression analysis indicated that Con7-1 modulates the expression of a large number of genes involved in different biological functions, including host–pathogen interactions, morphogenesis and development, signal perception and transduction, transcriptional regulation, and primary and secondary metabolism. Taken together, our results point to Con7-1 as general regulator of morphogenesis and virulence in F. oxysporum.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Shauna D. Drumm ◽  
Rebecca Owens ◽  
Jennifer Mitchell ◽  
Orla M. Keane

In Ireland, Staphylococcus aureus is the most common cause of intramammary infection (IMI) in cattle with the bovine-adapted lineages CC151 and CC97 most commonly found. Surface proteins play a major role in establishing and maintaining the infection. A previous study revealed that a strain from the CC151 lineage showed significant decay in genes encoding predicted surface proteins. Twenty-three S. aureus strains, twelve belonging to CC151 and eleven belonging to CC97, isolated from clinical IMI, were sequenced and genes encoding cell wall anchored (CWA) proteins predicted. Analysis showed that a minority of genes encoding putative CWA proteins were intact in the CC151 strains compared to CC97. Of the 26 known CWA proteins in S. aureus, the CC151 strains only encoded 10 intact genes while CC97 encoded on average 18 genes. Also within the CC97 lineage, the repertoire of genes varied depending on individual strains, with strains encoding between 17-20 intact genes. Although CC151 is reported to internalize within bovine host cells, it does so in a fibronectin-binding protein (FnBPA and FnBPB) independent manner. In-vitro assays were performed and results showed that strains from CC151, and surprisingly also CC97, weakly bound bovine fibronectin and that the FnBPs were poorly expressed in both these lineages. Mass spectrometry analysis of cell wall extracts revealed that SdrE and AdsA were the most highly expressed CWA proteins in both lineages. These results demonstrate significant differences between CC151 and CC97 in their repertoire of genes encoding CWA proteins, which may impact immune recognition of these strains and their interactions with host cells.


2020 ◽  
Vol 117 (11) ◽  
pp. 6003-6013 ◽  
Author(s):  
Vincent W. Wu ◽  
Nils Thieme ◽  
Lori B. Huberman ◽  
Axel Dietschmann ◽  
David J. Kowbel ◽  
...  

Filamentous fungi, such asNeurospora crassa, are very efficient in deconstructing plant biomass by the secretion of an arsenal of plant cell wall-degrading enzymes, by remodeling metabolism to accommodate production of secreted enzymes, and by enabling transport and intracellular utilization of plant biomass components. Although a number of enzymes and transcriptional regulators involved in plant biomass utilization have been identified, how filamentous fungi sense and integrate nutritional information encoded in the plant cell wall into a regulatory hierarchy for optimal utilization of complex carbon sources is not understood. Here, we performed transcriptional profiling ofN. crassaon 40 different carbon sources, including plant biomass, to provide data on how fungi sense simple to complex carbohydrates. From these data, we identified regulatory factors inN. crassaand characterized one (PDR-2) associated with pectin utilization and one with pectin/hemicellulose utilization (ARA-1). Using in vitro DNA affinity purification sequencing (DAP-seq), we identified direct targets of transcription factors involved in regulating genes encoding plant cell wall-degrading enzymes. In particular, our data clarified the role of the transcription factor VIB-1 in the regulation of genes encoding plant cell wall-degrading enzymes and nutrient scavenging and revealed a major role of the carbon catabolite repressor CRE-1 in regulating the expression of major facilitator transporter genes. These data contribute to a more complete understanding of cross talk between transcription factors and their target genes, which are involved in regulating nutrient sensing and plant biomass utilization on a global level.


2004 ◽  
Vol 186 (17) ◽  
pp. 5865-5875 ◽  
Author(s):  
Timothy C. Barnett ◽  
Aman R. Patel ◽  
June R. Scott

ABSTRACT The important human pathogen Streptococcus pyogenes (group A streptococcus GAS), requires several surface proteins to interact with its human host. Many of these are covalently linked by a sortase enzyme to the cell wall via a C-terminal LPXTG motif. This motif is followed by a hydrophobic region and charged C terminus, which are thought to retard the protein in the cell membrane to facilitate recognition by the membrane-localized sortase. Previously, we identified two sortase enzymes in GAS. SrtA is found in all GAS strains and anchors most proteins containing LPXTG, while SrtB is present only in some strains and anchors a subset of LPXTG-containing proteins. We now report the presence of a third sortase in most strains of GAS, SrtC. We show that SrtC mediates attachment of a protein with a QVPTGV motif preceding a hydrophobic region and charged tail. We also demonstrate that the QVPTGV sequence is a substrate for anchoring of this protein by SrtC. Furthermore, replacing this motif with LPSTGE, found in the SrtA-anchored M protein of GAS, leads to SrtA-dependent secretion of the protein but does not lead to its anchoring by SrtA. We conclude that srtC encodes a novel sortase that anchors a protein containing a QVPTGV motif to the surface of GAS.


1998 ◽  
Vol 180 (2) ◽  
pp. 282-289 ◽  
Author(s):  
Maria Sentandreu ◽  
M. Victoria Elorza ◽  
Rafael Sentandreu ◽  
William A. Fonzi

ABSTRACT Candida albicans is an opportunistic fungal pathogen of humans. The cell wall of the organism defines the interface between the pathogen and host tissues and is likely to play an essential and pivotal role in the host-pathogen interaction. The components of the cell wall critical to this interaction are undefined. Immunoscreening of a lambda expression library with sera raised against mycelial cell walls of C. albicans was used to identify genes encoding cell surface proteins. One of the positive clones represented a candidal gene that was differentially expressed in response to changes in the pH of the culture medium. Maximal expression occurred at neutral pH, with no expression detected below pH 6.0. On the basis of the expression pattern, the corresponding gene was designatedPRA1, for pH-regulated antigen. The protein predicted from the nucleotide sequence was 299 amino acids long with motifs characteristic of secreted glycoproteins. The predicted surface localization and N glycosylation of the protein were directly demonstrated by cell fractionation and immunoblot analysis. Deletion of the gene imparted a temperature-dependent defect in hypha formation, indicating a role in morphogenesis. The PRA1 protein was homologous to surface antigens of Aspergillus spp. which react with serum from aspergillosis patients, suggesting that thePRA1 protein may have a role in the host-parasite interaction during candidal infection.


2020 ◽  
Vol 71 (22) ◽  
pp. 7103-7117
Author(s):  
Candelas Paniagua ◽  
Pablo Ric-Varas ◽  
Juan A García-Gago ◽  
Gloria López-Casado ◽  
Rosario Blanco-Portales ◽  
...  

Abstract To disentangle the role of polygalacturonase (PG) genes in strawberry softening, the two PG genes most expressed in ripe receptacles, FaPG1 and FaPG2, were down-regulated. Transgenic ripe fruits were firmer than those of the wild type when PG genes were silenced individually. Simultaneous silencing of both PG genes by transgene stacking did not result in an additional increase in firmness. Cell walls from ripe fruits were characterized by a carbohydrate microarray. Higher signals of homogalacturonan and rhamnogalacturonan I pectin epitopes in polysaccharide fractions tightly bound to the cell wall were observed in the transgenic genotypes, suggesting a lower pectin solubilization. At the transcriptomic level, the suppression of FaPG1 or FaPG2 alone induced few transcriptomic changes in the ripe receptacle, but the amount of differentially expressed genes increased notably when both genes were silenced. Many genes encoding cell wall-modifying enzymes were down-regulated. The expression of a putative high affinity potassium transporter was induced in all transgenic genotypes, indicating that cell wall weakening and loss of cell turgor could be linked. These results suggest that, besides the disassembly of pectins tightly linked to the cell wall, PGs could play other roles in strawberry softening, such as the release of oligogalacturonides exerting a positive feedback in softening.


2013 ◽  
Vol 289 (3) ◽  
pp. 1243-1256 ◽  
Author(s):  
Mark J. Lee ◽  
Fabrice N. Gravelat ◽  
Robert P. Cerone ◽  
Stefanie D. Baptista ◽  
Paolo V. Campoli ◽  
...  

The cell wall of Aspergillus fumigatus contains two galactose-containing polysaccharides, galactomannan and galactosaminogalactan, whose biosynthetic pathways are not well understood. The A. fumigatus genome contains three genes encoding putative UDP-glucose 4-epimerases, uge3, uge4, and uge5. We undertook this study to elucidate the function of these epimerases. We found that uge4 is minimally expressed and is not required for the synthesis of galactose-containing exopolysaccharides or galactose metabolism. Uge5 is the dominant UDP-glucose 4-epimerase in A. fumigatus and is essential for normal growth in galactose-based medium. Uge5 is required for synthesis of the galactofuranose (Galf) component of galactomannan and contributes galactose to the synthesis of galactosaminogalactan. Uge3 can mediate production of both UDP-galactose and UDP-N-acetylgalactosamine (GalNAc) and is required for the production of galactosaminogalactan but not galactomannan. In the absence of Uge5, Uge3 activity is sufficient for growth on galactose and the synthesis of galactosaminogalactan containing lower levels of galactose but not the synthesis of Galf. A double deletion of uge5 and uge3 blocked growth on galactose and synthesis of both Galf and galactosaminogalactan. This study is the first survey of glucose epimerases in A. fumigatus and contributes to our understanding of the role of these enzymes in metabolism and cell wall synthesis.


2005 ◽  
Vol 73 (6) ◽  
pp. 3773-3777 ◽  
Author(s):  
Céline M. Lévesque ◽  
Elena Voronejskaia ◽  
Yi-Chen Cathy Huang ◽  
Richard W. Mair ◽  
Richard P. Ellen ◽  
...  

ABSTRACT Streptococcus mutans is one of the best-known biofilm-forming organisms associated with humans. We investigated the role of the sortase gene (srtA) in monospecies biofilm formation and observed that inactivation of srtA caused a decrease in biofilm formation. Genes encoding three putative sortase-dependent proteins were also found to be up-regulated in biofilms versus planktonic cells and mutations in these genes resulted in reduced biofilm biomass.


Sign in / Sign up

Export Citation Format

Share Document