scholarly journals Experimental Evolution of Extreme Resistance to Ionizing Radiation inEscherichia coliafter 50 Cycles of Selection

2019 ◽  
Vol 201 (8) ◽  
Author(s):  
Steven T. Bruckbauer ◽  
Joseph D. Trimarco ◽  
Joel Martin ◽  
Brian Bushnell ◽  
Katherine A. Senn ◽  
...  

ABSTRACTIn previous work (D. R. Harris et al., J Bacteriol 191:5240–5252, 2009, https://doi.org/10.1128/JB.00502-09; B. T. Byrne et al., Elife 3:e01322, 2014, https://doi.org/10.7554/eLife.01322), we demonstrated thatEscherichia colicould acquire substantial levels of resistance to ionizing radiation (IR) via directed evolution. Major phenotypic contributions involved adaptation of organic systems for DNA repair. We have now undertaken an extended effort to generateE. colipopulations that are as resistant to IR asDeinococcus radiodurans. After an initial 50 cycles of selection using high-energy electron beam IR, four replicate populations exhibit major increases in IR resistance but have not yet reached IR resistance equivalent toD. radiodurans. Regular deep sequencing reveals complex evolutionary patterns with abundant clonal interference. Prominent IR resistance mechanisms involve novel adaptations to DNA repair systems and alterations in RNA polymerase. Adaptation is highly specialized to resist IR exposure, since isolates from the evolved populations exhibit highly variable patterns of resistance to other forms of DNA damage. Sequenced isolates from the populations possess between 184 and 280 mutations. IR resistance in one isolate, IR9-50-1, is derived largely from four novel mutations affecting DNA and RNA metabolism: RecD A90E, RecN K429Q, and RpoB S72N/RpoC K1172I. Additional mechanisms of IR resistance are evident.IMPORTANCESome bacterial species exhibit astonishing resistance to ionizing radiation, withDeinococcus radioduransbeing the archetype. As natural IR sources rarely exceed mGy levels, the capacity ofDeinococcusto survive 5,000 Gy has been attributed to desiccation resistance. To understand the molecular basis of true extreme IR resistance, we are using experimental evolution to generate strains ofEscherichia coliwith IR resistance levels comparable toDeinococcus. Experimental evolution has previously generated moderate radioresistance for multiple bacterial species. However, these efforts could not take advantage of modern genomic sequencing technologies. In this report, we examine four replicate bacterial populations after 50 selection cycles. Genomic sequencing allows us to follow the genesis of mutations in populations throughout selection. Novel mutations affecting genes encoding DNA repair proteins and RNA polymerase enhance radioresistance. However, more contributors are apparent.

2009 ◽  
Vol 191 (16) ◽  
pp. 5240-5252 ◽  
Author(s):  
Dennis R. Harris ◽  
Steve V. Pollock ◽  
Elizabeth A. Wood ◽  
Reece J. Goiffon ◽  
Audrey J. Klingele ◽  
...  

ABSTRACT We have generated extreme ionizing radiation resistance in a relatively sensitive bacterial species, Escherichia coli, by directed evolution. Four populations of Escherichia coli K-12 were derived independently from strain MG1655, with each specifically adapted to survive exposure to high doses of ionizing radiation. D37 values for strains isolated from two of the populations approached that exhibited by Deinococcus radiodurans. Complete genomic sequencing was carried out on nine purified strains derived from these populations. Clear mutational patterns were observed that both pointed to key underlying mechanisms and guided further characterization of the strains. In these evolved populations, passive genomic protection is not in evidence. Instead, enhanced recombinational DNA repair makes a prominent but probably not exclusive contribution to genome reconstitution. Multiple genes, multiple alleles of some genes, multiple mechanisms, and multiple evolutionary pathways all play a role in the evolutionary acquisition of extreme radiation resistance. Several mutations in the recA gene and a deletion of the e14 prophage both demonstrably contribute to and partially explain the new phenotype. Mutations in additional components of the bacterial recombinational repair system and the replication restart primosome are also prominent, as are mutations in genes involved in cell division, protein turnover, and glutamate transport. At least some evolutionary pathways to extreme radiation resistance are constrained by the temporally ordered appearance of specific alleles.


Microbiology ◽  
2003 ◽  
Vol 149 (7) ◽  
pp. 1763-1770 ◽  
Author(s):  
Ryszard Zielke ◽  
Aleksandra Sikora ◽  
Rafał Dutkiewicz ◽  
Grzegorz Wegrzyn ◽  
Agata Czyż

CgtA is a member of the Obg/Gtp1 subfamily of small GTP-binding proteins. CgtA homologues have been found in various prokaryotic and eukaryotic organisms, ranging from bacteria to humans. Nevertheless, despite the fact that cgtA is an essential gene in most bacterial species, its function in the regulation of cellular processes is largely unknown. Here it has been demonstrated that in two bacterial species, Escherichia coli and Vibrio harveyi, the cgtA gene product enhances survival of cells after UV irradiation. Expression of the cgtA gene was found to be enhanced after UV irradiation of both E. coli and V. harveyi. Moderate overexpression of cgtA resulted in higher UV resistance of E. coli wild-type and dnaQ strains, but not in uvrA, uvrB, umuC and recA mutant hosts. Overexpression of the E. coli recA gene in the V. harveyi cgtA mutant, which is very sensitive to UV light, restored the level of survival of UV-irradiated cells to the levels observed for wild-type bacteria. Moreover, the basal level of the RecA protein was lower in a temperature-sensitive cgtA mutant of E. coli than in the cgtA + strain, and contrary to wild-type bacteria, no significant increase in recA gene expression was observed after UV irradiation of this cgtA mutant. Finally, stimulation of uvrB gene transcription under these conditions was impaired in the V. harveyi cgtA mutant. All these results strongly suggest that the cgtA gene product is involved in DNA repair processes, most probably by stimulation of recA gene expression and resultant activation of RecA-dependent DNA repair pathways.


2019 ◽  
Vol 201 (9) ◽  
Author(s):  
Michael Downey

ABSTRACTDuring stress, bacterial cells activate a conserved pathway called the stringent response that promotes survival. Polyphosphates are long chains of inorganic phosphates that modulate this response in diverse bacterial species. In this issue, Michael J. Gray provides an important correction to the model of how polyphosphate accumulation is regulated during the stringent response inEscherichia coli(M. J. Gray, J. Bacteriol, 201:e00664-18, 2019,https://doi.org/10.1128/JB.00664-18). With other recent publications, this study provides a revised framework for understanding how bacterial polyphosphate dynamics might be exploited in infection control and industrial applications.


2015 ◽  
Vol 59 (6) ◽  
pp. 3246-3251 ◽  
Author(s):  
Jerónimo Rodríguez-Beltrán ◽  
Gabriel Cabot ◽  
Estela Ynés Valencia ◽  
Coloma Costas ◽  
German Bou ◽  
...  

ABSTRACTThe modulating effect ofN-acetylcysteine (NAC) on the activity of different antibiotics has been studied inPseudomonas aeruginosa. Our results demonstrate that, in contrast to previous reports, only the activity of imipenem is clearly affected by NAC. MIC and checkerboard determinations indicate that the NAC-based modulation of imipenem activity is dependent mainly on OprD. SDS-PAGE of outer membrane proteins (OMPs) after NAC treatments demonstrates that NAC does not modify the expression of OprD, suggesting that NAC competitively inhibits the uptake of imipenem through OprD. Similar effects on imipenem activity were obtained withP. aeruginosaclinical isolates. Our results indicate that imipenem-susceptibleP. aeruginosastrains become resistant upon simultaneous treatment with NAC and imipenem. Moreover, the generality of the observed effects of NAC on antibiotic activity was assessed with two additional bacterial species,Escherichia coliandAcinetobacter baumannii. Caution should be taken during treatments, as the activity of imipenem may be modified by physiologically attainable concentrations of NAC, particularly during intravenous and nebulized regimes.


2019 ◽  
Vol 63 (10) ◽  
Author(s):  
Anne-Claire Mahérault ◽  
Harry Kemble ◽  
Mélanie Magnan ◽  
Benoit Gachet ◽  
David Roche ◽  
...  

ABSTRACT Despite a fitness cost imposed on bacterial hosts, large conjugative plasmids play a key role in the diffusion of resistance determinants, such as CTX-M extended-spectrum β-lactamases. Among the large conjugative plasmids, IncF plasmids are the most predominant group, and an F2:A1:B- IncF-type plasmid encoding a CTX-M-15 variant was recently described as being strongly associated with the emerging worldwide Escherichia coli sequence type 131 (ST131)-O25b:H4 H30Rx/C2 sublineage. In this context, we investigated the fitness cost of narrow-range F-type plasmids, including the F2:A1:B- IncF-type CTX-M-15 plasmid, and of broad-range C-type plasmids in the K-12-like J53-2 E. coli strain. Although all plasmids imposed a significant fitness cost to the bacterial host immediately after conjugation, we show, using an experimental-evolution approach, that a negative impact on the fitness of the host strain was maintained throughout 1,120 generations with the IncC-IncR plasmid, regardless of the presence or absence of cefotaxime, in contrast to the F2:A1:B- IncF plasmid, whose cost was alleviated. Many chromosomal and plasmid rearrangements were detected after conjugation in transconjugants carrying the IncC plasmids but not in transconjugants carrying the F2:A1:B- IncF plasmid, except for insertion sequence (IS) mobilization from the fliM gene leading to the restoration of motility of the recipient strains. Only a few mutations occurred on the chromosome of each transconjugant throughout the experimental-evolution assay. Our findings indicate that the F2:A1:B- IncF CTX-M-15 plasmid is well adapted to the E. coli strain studied, contrary to the IncC-IncR CTX-M-15 plasmid, and that such plasmid-host adaptation could participate in the evolutionary success of the CTX-M-15-producing pandemic E. coli ST131-O25b:H4 lineage.


mSystems ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
D. Aytan-Aktug ◽  
P. T. L. C. Clausen ◽  
V. Bortolaia ◽  
F. M. Aarestrup ◽  
O. Lund

ABSTRACT Machine learning has proven to be a powerful method to predict antimicrobial resistance (AMR) without using prior knowledge for selected bacterial species-antimicrobial combinations. To date, only species-specific machine learning models have been developed, and to the best of our knowledge, the inclusion of information from multiple species has not been attempted. The aim of this study was to determine the feasibility of including information from multiple bacterial species to predict AMR for an individual species, since this may make it easier to train and update resistance predictions for multiple species and may lead to improved predictions. Whole-genome sequence data and susceptibility profiles from 3,528 Mycobacterium tuberculosis, 1,694 Escherichia coli, 658 Salmonella enterica, and 1,236 Staphylococcus aureus isolates were included. We developed machine learning models trained by the features of the PointFinder and ResFinder programs detected to predict binary (susceptible/resistant) AMR profiles. We tested four feature representation methods to determine the most efficient way for introducing features into the models. When training the model only on the Mycobacterium tuberculosis isolates, high prediction performances were obtained for the six AMR profiles included. By adding information on ciprofloxacin from the additional 3,588 isolates, there was no reduction in performance for the other antimicrobials but an increased performance for ciprofloxacin AMR profile prediction for Mycobacterium tuberculosis and Escherichia coli. In conclusion, the species-independent models can predict multi-AMR profiles for multiple species without losing any robustness. IMPORTANCE Machine learning is a proven method to predict AMR; however, the performance of any machine learning model depends on the quality of the input data. Therefore, we evaluated different methods of representing information about mutations as well as mobilizable genes, so that the information can serve as input for a robust model. We combined data from multiple bacterial species in order to develop species-independent machine learning models that can predict resistance profiles for multiple antimicrobials and species with high performance.


2016 ◽  
Vol 55 (2) ◽  
pp. 616-623 ◽  
Author(s):  
Marie A. Chattaway ◽  
Ulf Schaefer ◽  
Rediat Tewolde ◽  
Timothy J. Dallman ◽  
Claire Jenkins

ABSTRACTEscherichia coliandShigellaspecies are closely related and genetically constitute the same species. Differentiating between these two pathogens and accurately identifying the four species ofShigellaare therefore challenging. The organism-specific bioinformatics whole-genome sequencing (WGS) typing pipelines at Public Health England are dependent on the initial identification of the bacterial species by use of a kmer-based approach. Of the 1,982Escherichia coliandShigellasp. isolates analyzed in this study, 1,957 (98.4%) had concordant results by both traditional biochemistry and serology (TB&S) and the kmer identification (ID) derived from the WGS data. Of the 25 mismatches identified, 10 were enteroinvasiveE. coliisolates that were misidentified asShigella flexneriorS. boydiiby the kmer ID, and 8 wereS. flexneriisolates misidentified by TB&S asS. boydiidue to nonfunctionalS. flexneriO antigen biosynthesis genes. Analysis of the population structure based on multilocus sequence typing (MLST) data derived from the WGS data showed that the remaining discrepant results belonged to clonal complex 288 (CC288), comprising bothS. boydiiandS. dysenteriaestrains. Mismatches between the TB&S and kmer ID results were explained by the close phylogenetic relationship between the two species and were resolved with reference to the MLST data.Shigellacan be differentiated fromE. coliand accurately identified to the species level by use of kmer comparisons and MLST. Analysis of the WGS data provided explanations for the discordant results between TB&S and WGS data, revealed the true phylogenetic relationships between different species ofShigella, and identified emerging pathoadapted lineages.


1985 ◽  
Vol 103 (3) ◽  
pp. 410 ◽  
Author(s):  
Istvan Francia ◽  
Susanna Hernadi ◽  
M. Szabolcs ◽  
F. Hernadi

Sign in / Sign up

Export Citation Format

Share Document