scholarly journals Glucosylglycerate Biosynthesis in the Deepest Lineage of the Bacteria: Characterization of the Thermophilic Proteins GpgS and GpgP from Persephonella marina

2006 ◽  
Vol 189 (5) ◽  
pp. 1648-1654 ◽  
Author(s):  
Joana Costa ◽  
Nuno Empadinhas ◽  
Milton S. da Costa

ABSTRACT The pathway for the synthesis of glucosylglycerate (GG) in the thermophilic bacterium Persephonella marina is proposed based on the activities of recombinant glucosyl-3-phosphoglycerate (GPG) synthase (GpgS) and glucosyl-3-phosphoglycerate phosphatase (GpgP). The sequences of gpgS and gpgP from the cold-adapted bacterium Methanococcoides burtonii were used to identify the homologues in the genome of P. marina, which were separately cloned and overexpressed as His-tagged proteins in Escherichia coli. The recombinant GpgS protein of P. marina, unlike the homologue from M. burtonii, which was specific for GDP-glucose, catalyzed the synthesis of GPG from UDP-glucose, GDP-glucose, ADP-glucose, and TDP-glucose (in order of decreasing efficiency) and from d-3-phosphoglycerate, with maximal activity at 90°C. The recombinant GpgP protein, like the M. burtonii homologue, dephosphorylated GPG and mannosyl-3-phosphoglycerate (MPG) to GG and mannosylglycerate, respectively, yet at high temperatures the hydrolysis of GPG was more efficient than that of MPG. Gel filtration indicates that GpgS is a dimeric protein, while GpgP is monomeric. This is the first characterization of genes and enzymes for the synthesis of GG in a thermophile.

2005 ◽  
Vol 387 (1) ◽  
pp. 271-280 ◽  
Author(s):  
Seonghun KIM ◽  
Sun Bok LEE

The extremely thermoacidophilic archaeon Sulfolobus solfataricus utilizes D-glucose as a sole carbon and energy source through the non-phosphorylated Entner–Doudoroff pathway. It has been suggested that this micro-organism metabolizes D-gluconate, the oxidized form of D-glucose, to pyruvate and D-glyceraldehyde by using two unique enzymes, D-gluconate dehydratase and 2-keto-3-deoxy-D-gluconate aldolase. In the present study, we report the purification and characterization of D-gluconate dehydratase from S. solfataricus, which catalyses the conversion of D-gluconate into 2-keto-3-deoxy-D-gluconate. D-Gluconate dehydratase was purified 400-fold from extracts of S. solfataricus by ammonium sulphate fractionation and chromatography on DEAE-Sepharose, Q-Sepharose, phenyl-Sepharose and Mono Q. The native protein showed a molecular mass of 350 kDa by gel filtration, whereas SDS/PAGE analysis provided a molecular mass of 44 kDa, indicating that D-gluconate dehydratase is an octameric protein. The enzyme showed maximal activity at temperatures between 80 and 90 °C and pH values between 6.5 and 7.5, and a half-life of 40 min at 100 °C. Bivalent metal ions such as Co2+, Mg2+, Mn2+ and Ni2+ activated, whereas EDTA inhibited the enzyme. A metal analysis of the purified protein revealed the presence of one Co2+ ion per enzyme monomer. Of the 22 aldonic acids tested, only D-gluconate served as a substrate, with Km=0.45 mM and Vmax=0.15 unit/mg of enzyme. From N-terminal sequences of the purified enzyme, it was found that the gene product of SSO3198 in the S. solfataricus genome database corresponded to D-gluconate dehydratase (gnaD). We also found that the D-gluconate dehydratase of S. solfataricus is a phosphoprotein and that its catalytic activity is regulated by a phosphorylation–dephosphorylation mechanism. This is the first report on biochemical and genetic characterization of D-gluconate dehydratase involved in the non-phosphorylated Entner–Doudoroff pathway.


2000 ◽  
Vol 66 (1) ◽  
pp. 252-256 ◽  
Author(s):  
Katsuichi Saito ◽  
Kazuya Kondo ◽  
Ichiro Kojima ◽  
Atsushi Yokota ◽  
Fusao Tomita

ABSTRACT Streptomyces exfoliatus F3-2 produced an extracellular enzyme that converted levan, a β-2,6-linked fructan, into levanbiose. The enzyme was purified 50-fold from culture supernatant to give a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weights of this enzyme were 54,000 by SDS-PAGE and 60,000 by gel filtration, suggesting the monomeric structure of the enzyme. The isoelectric point of the enzyme was determined to be 4.7. The optimal pH and temperature of the enzyme for levan degradation were pH 5.5 and 60°C, respectively. The enzyme was stable in the pH range 3.5 to 8.0 and also up to 50°C. The enzyme gave levanbiose as a major degradation product from levan in an exo-acting manner. It was also found that this enzyme catalyzed hydrolysis of such fructooligosaccharides as 1-kestose, nystose, and 1-fructosylnystose by liberating fructose. Thus, this enzyme appeared to hydrolyze not only β-2,6-linkage of levan, but also β-2,1-linkage of fructooligosaccharides. From these data, the enzyme from S. exfoliatus F3-2 was identified as a novel 2,6-β-d-fructan 6-levanbiohydrolase (EC 3.2.1.64 ).


2001 ◽  
Vol 67 (4) ◽  
pp. 1601-1606 ◽  
Author(s):  
Mitsunori Ishiguro ◽  
Satoshi Kaneko ◽  
Atsushi Kuno ◽  
Yoshinori Koyama ◽  
Shigeki Yoshida ◽  
...  

ABSTRACT The nucleotide sequence of the Thermus sp. strain T2 DNA coding for a thermostable α-galactosidase was determined. The deduced amino acid sequence of the enzyme predicts a polypeptide of 474 amino acids (M r, 53,514). The observed homology between the deduced amino acid sequences of the enzyme and α-galactosidase from Thermus brockianus was over 70%.Thermus sp. strain T2 α-galactosidase was expressed in its active form in Escherichia coli and purified. Native polyacrylamide gel electrophoresis and gel filtration chromatography data suggest that the enzyme is octameric. The enzyme was most active at 75°C forp-nitrophenyl-α-d-galactopyranoside hydrolysis, and it retained 50% of its initial activity after 1 h of incubation at 70°C. The enzyme was extremely stable over a broad range of pH (pH 6 to 13) after treatment at 40°C for 1 h. The enzyme acted on the terminal α-galactosyl residue, not on the side chain residue, of the galactomanno-oligosaccharides as well as those of yeasts and Mortierella vinacea α-galactosidase I. The enzyme has only one Cys residue in the molecule.para-Chloromercuribenzoic acid completely inhibited the enzyme but did not affect the mutant enzyme which contained Ala instead of Cys, indicating that this Cys residue is not responsible for its catalytic function.


2017 ◽  
Vol 42 (6) ◽  
Author(s):  
Şaban Keskin ◽  
Nagihan Saglam Ertunga

AbstractObjective:In this study, α-amylase from a thermophilic bacterium Geobacillus sp. TF14 was purified and immobilized on two different supports.Methods:Ion exchange and hydrophobic interaction chromatography techniques were employed for the purification.Results:The enzyme was purified as 17.11 fold and determined as a single band of 54 kDa on SDS-PAGE. Purified enzyme showed two pH optimums of pH 5.00 and pH 9.00 and the enzyme is quite stable at these pHs over a period of 48 h. Purified enzyme showed maximal activity at 75°C and stability at this temperature over a period of 72 h. It was observed that CaConclusion:It can be concluded that the purified enzyme may find application in many fields of starch based industries.


1987 ◽  
Vol 73 (1) ◽  
pp. 19-28 ◽  
Author(s):  
H. M. Morrison ◽  
J. A. Kramps ◽  
S. C. Afford ◽  
D. Burnett ◽  
J. H. Dijkman ◽  
...  

1. Anti-elastase function in sputum sol-phase from patients with α1-proteinase inhibitor (α1PI) deficiency was compared with sol-phase from patients with cigarette smoke-induced bronchitis and emphysema. 2. Both α1PI (2P < 0.01) and anti-leucoprotease (ALP) (2P < 0.01) concentrations were lower in sol-phase from the α1PI-deficient group, although α2-macroglobulin (α2M) levels were similar. 3. There was no difference in α1PI function between the two groups, but the inhibitor was only ≃ 30% active. 4. The absolute neutrophil elastase (NE) inhibitory capacity was similar in both groups (median 185 μg of NE inhibited/ml of sputum, range 80–480, for the α1PI-deficient group; median 175, range 80–300, for the bronchitic group). A substantial proportion of NE inhibition in secretions could not be accounted for by the amount of α1PI, ALP and α2M present (median 74.8%, range 43.2–97.4, for α1PI-deficient sol-phase; median 50.0%, range 0–80.8, for bronchitic sol-phase). 5. Gel filtration of sol-phase demonstrated the presence of NE inhibition in the low molecular weight fractions which was markedly sensitive to changes in substrate concentration and ionic strength, in contrast to purified α1PI and ALP. 6. Sputum sol-phase from both groups failed to prevent hydrolysis of elastin–fluorescein or succinyltrialanyl-p-nitroanilide by NE completely during prolonged incubation in the presence of an excess of functional inhibitors. This was more apparent in secretions from subjects with α1PI deficiency and may explain why such patients have a more rapidly progressive form of emphysema.


1979 ◽  
Vol 177 (1) ◽  
pp. 107-114 ◽  
Author(s):  
T G Villa ◽  
V Notario ◽  
J R Villanueva

The endo-1,3-beta-glucanase (EC 3.2.1.6) secreted into the culture medium by cells of Candida utilis was isolated and purified to homogeneity on polyacrylamide-gel electrophoresis and in ultracentrifugation studies (s20,w = 1.97S). The purified enzyme represented only 0.001% of the total 1,3-beta-glucanase activity, the remainder being due to an exo-1,3-beta-glucanase enzyme, and behaved as an acidic glycoprotein (pI 3.3) in isoelectric-focusing experiments. The mol.wt. was estimated to be 21 000 by gel filtration and polyacrylamide-gel electrophoresis. Studies on the hydrolysis of different substrates showed that the enzyme was only able to break down (1 leads to 3)-beta-linkages, by an endo-splitting mechanism. Glucono-delta-lactone, D-glucoronolactone and heavy metal ions such as Hg2+ were inhibitors of the enzyme activity. The function of this endo-beta-glucanase in C. utilis is discussed.


2002 ◽  
Vol 277 (51) ◽  
pp. 49651-49654 ◽  
Author(s):  
Georgiy A. Belogurov ◽  
Reijo Lahti

The H+proton-translocating inorganic pyrophosphatase (H+-PPase) family is composed of two phylogenetically distinct types of enzymes: K+-dependent and K+-independent. However, to date, the sequence criteria governing this dichotomy have remained unknown. In this study, we describe the heterologous expression and functional characterization of H+-PPase from the thermophilic bacteriumCarboxydothermus hydrogenoformans. Both PPi-hydrolyzing and PPi-energized H+translocation activities of the recombinant enzyme inEscherichia coliinner membrane vesicles are strictly K+-dependent. Here we deduce the K+requirement of all available H+-PPase sequences based on the K+dependence ofC. hydrogenoformansH+-PPase in conjunction with phylogenetic analyses. Our data reveal that K+-independent H+-PPases possess conserved Lys and Thr that are absent in K+-dependent H+-PPases. We further demonstrate that a A460K substitution inC. hydrogenoformansH+-PPase is sufficient to confer K+independence to both PPihydrolysis and PPi-energized H+translocation. In contrast, a A463T mutation does not affect the K+dependence of H+-PPase.


2002 ◽  
Vol 46 (6) ◽  
pp. 1921-1927 ◽  
Author(s):  
Sandrine Vessillier ◽  
Jean-Denis Docquier ◽  
Sandrine Rival ◽  
Jean-Marie Frere ◽  
Moreno Galleni ◽  
...  

ABSTRACT The BlaB metallo-β-lactamase of Chryseobacterium meningosepticum CCUG4310 was overproduced in Escherichia coli by means of a T7 promoter-based expression system. The overproducing system, scaled up in a 15-liter fermentor, yielded approximately 10 mg of BlaB protein per liter, mostly released in the culture supernatant. The enzyme was purified by two ion-exchange chromatographic steps with an overall yield of 66%. Analysis of the kinetic parameters revealed efficient activities (k cat/Km ratios of >106 M−1 s−1) toward most penam and carbapenem compounds, with the exception of the 6-α-methoxypenam derivative temocillin and of biapenem, which were poorer substrates. Hydrolysis of cephalosporins was overall less efficient, with a remarkable variability that was largely due to variable affinities of the BlaB enzyme for different compounds. BlaB was also able to hydrolyze serine-β-lactamase inhibitors, including β-iodopenicillanate, sulbactam and, although less efficiently, tazobactam.


2001 ◽  
Vol 67 (2) ◽  
pp. 995-1000 ◽  
Author(s):  
Hwa-Young Kim ◽  
Yong-Jin Choi

ABSTRACT Cycloinulooligosaccharide fructanotransferase (CFTase) converts inulin into cyclooligosaccharides of β-(2→1)-linkedd-fructofuranose by catalyzing an intramolecular transfructosylation reaction. The CFTase gene was cloned and characterized from Bacillus macerans CFC1. The CFTase gene encoded a polypeptide of 1,333 amino acids with a calculatedM r of 149,563. Western blot and zymography analyses revealed that the CFTase with a molecular mass of 150 kDa (CFT150) was processed (between Ser389 and Phe390 residue) to form a 107-kDa protein (CFT107) in the B. macerans CFC1 cells. The processed CFT107 was similar in its mass to the previously purified CFTase from B. macerans CFC1. The CFT107 enzyme was produced by B. macerans CFC1 but was not detected from the recombinant Escherichia coli cells, indicating that the processing event occurred in a host-specific manner. The two CFTases (CFT150 and CFT107) exhibited the same enzymatic properties, such as influences of pH and temperature on the enzyme activity, the intermolecular transfructosylation ability, and the ability of hydrolysis of cycloinulooligosaccharides produced by the cyclization reaction. However, the thermal stability of CFT107 was slightly higher than that of CFT150. The most striking difference between the two enzymes was observed in their Km values; the value for CFT150 (1.56 mM) was threefold lower than that for CFT107 (4.76 mM). Thus, the specificity constant (k cat/Km ) of CFT150 was about fourfold higher than that of CFT107. These results indicated that the N-terminal 358-residue region of CFT150 played a role in increasing the enzyme's binding affinity to the inulin substrate.


Sign in / Sign up

Export Citation Format

Share Document