scholarly journals Characterization of CamH from Methanosarcina thermophila, Founding Member of a Subclass of the γ Class of Carbonic Anhydrases

2009 ◽  
Vol 192 (5) ◽  
pp. 1353-1360 ◽  
Author(s):  
Sabrina A. Zimmerman ◽  
Jean-Francois Tomb ◽  
James G. Ferry

ABSTRACT The homotrimeric enzyme Mt-Cam from Methanosarcina thermophila is the archetype of the γ class of carbonic anhydrases. A search of databases queried with Mt-Cam revealed that a majority of the homologs comprise a putative subclass (CamH) in which there is major conservation of all of the residues essential for the archetype Mt-Cam except Glu62 and an acidic loop containing the essential proton shuttle residue Glu84. The CamH homolog from M. thermophila (Mt-CamH) was overproduced in Escherichia coli and characterized to validate its activity and initiate an investigation of the CamH subclass. The Mt-CamH homotrimer purified from E. coli cultured with supplemental zinc (Zn-Mt-CamH) contained 0.71 zinc and 0.15 iron per monomer and had k cat and kcat /Km values that were substantially lower than those for the zinc form of Mt-Cam (Zn-Mt-Cam). Mt-CamH purified from E. coli cultured with supplemental iron (Fe-Mt-CamH) was also a trimer containing 0.15 iron per monomer and only a trace amount of zinc and had an effective k cat (k cat eff) value normalized for iron that was 6-fold less than that for the iron form of Mt-Cam, whereas the k cat/Km eff was similar to that for Fe-Mt-Cam. Addition of 50 mM imidazole to the assay buffer increased the k cat eff of Fe-Mt-CamH more than 4-fold. Fe-Mt-CamH lost activity when it was exposed to air or 3% H2O2, which supports the hypothesis that Fe2+ has a role in the active site. The k cat for Fe-Mt-CamH was dependent on the concentration of buffer in a way that indicates that it acts as a second substrate in a “ping-pong” mechanism accepting a proton. The k cat/Km was not dependent on the buffer, consistent with the mechanism for all carbonic anhydrases in which the interconversion of CO2 and HCO3 − is separate from intermolecular proton transfer.

1988 ◽  
Vol 250 (3) ◽  
pp. 789-796 ◽  
Author(s):  
P N Lowe ◽  
S Rhodes

A multi-step procedure has been developed for the purification of [acyl-carrier-protein] acetyltransferase from Escherichia coli, which allows the production of small amounts of homogeneous enzyme. The subunit Mr was estimated to be 29,000 and the native Mr was estimated to be 61,000, suggesting a homodimeric structure. The catalytic properties of the enzyme are consistent with a Bi Bi Ping Pong mechanism and the existence of an acetyl-enzyme intermediate in the catalytic cycle. The enzyme was inhibited by N-ethylmaleimide and more slowly by iodoacetamide in reactions protected by the substrate, acetyl-CoA. However, the enzyme was apparently only weakly inhibited by the thiol-specific reagent methyl methanethiosulphonate. The nature of the acetyl-enzyme intermediate is discussed in relationship to that found in other similar enzymes from E. coli, yeast and vertebrates.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Paola R. Beassoni ◽  
Lucas A. Gallarato ◽  
Cristhian Boetsch ◽  
Mónica N. Garrido ◽  
Angela T. Lisa

Pseudomonas aeruginosa exopolyphosphatase (paPpx; EC 3.6.1.11) catalyzes the hydrolysis of polyphosphates (polyP), producing polyPn−1 plus inorganic phosphate (Pi). In a recent work we have shown that paPpx is involved in the pathogenesis of P. aeruginosa. The present study was aimed at performing the biochemical characterization of this enzyme. We found some properties that were already described for E. coli Ppx (ecPpx) but we also discovered new and original characteristics of paPpx: (i) the peptide that connects subdomains II and III is essential for enzyme activity; (ii) NH4+ is an activator of the enzyme and may function at concentrations lower than those of K+; (iii) Zn2+ is also an activator of paPpx and may substitute Mg2+ in the catalytic site; and (iv) paPpx also has phosphotransferase activity, dependent on Mg2+ and capable of producing ATP regardless of the presence or absence of K+ or NH4+ ions. In addition, we detected that the active site responsible for the phosphatase activity is also responsible for the phosphotransferase activity. Through the combination of molecular modeling and docking techniques, we propose a model of the paPpx N-terminal domain in complex with a polyP chain of 7 residues long and a molecule of ADP to explain the phosphotransferase activity.


2020 ◽  
Author(s):  
Talita Stelling de Araújo ◽  
Sandra M. N. Scapin ◽  
William de Andrade ◽  
Maira Fasciotti ◽  
Mariana T. Q. de Magalhães ◽  
...  

AbstractThe hydrolysis of asparagine and glutamine by L-asparaginase has been used to treat acute lymphoblastic leukemia for over four decades. Each L-asparaginase monomer has a long loop that closes over the active site upon substrate binding, acting as a lid. Here we present a comparative study two commercially available preparations of the drug containing Escherichia coli L-Asparaginase 2, performed by a comprehensive array of biophysical and biochemical approaches. We report the oligomeric landscape and conformational and dynamic plasticity of E. coli type 2 L-asparaginase (EcA2) present in two different formulations, and its relationship with L-aspartic acid, which is present in Aginasa, but not in Leuginase. EcA2 shows a composition of monomers and oligomers up to tetramers, which is mostly not altered in the presence of L-Asp. The N-terminal loop of Leuginase, which is part of the active site is flexibly disordered, but gets ordered as in Aginasa in the presence os L-Asp, while L-Glu only does so to a limited extent. Ion-mobility spectrometry–mass spectrometry reveals two conformers for the monomeric EcA2, one of which can selectively bind to L-Asp and L-Glu. Aginasa has higher resistance to in vitro proteolysis than Leuginase, and this is directly related to the presence of L-Asp.


2004 ◽  
Vol 186 (6) ◽  
pp. 1802-1810 ◽  
Author(s):  
Samantha J. Marshall ◽  
Doreen Krause ◽  
Dayle K. Blencowe ◽  
Graham F. White

ABSTRACT Glycerol trinitrate reductase (NerA) from Agrobacterium radiobacter, a member of the old yellow enzyme (OYE) family of oxidoreductases, was expressed in and purified from Escherichia coli. Denaturation of pure enzyme liberated flavin mononucleotide (FMN), and spectra of NerA during reduction and reoxidation confirmed its catalytic involvement. Binding of FMN to apoenzyme to form the holoenzyme occurred with a dissociation constant of ca. 10−7 M and with restoration of activity. The NerA-dependent reduction of glycerol trinitrate (GTN; nitroglycerin) by NADH followed ping-pong kinetics. A structural model of NerA based on the known coordinates of OYE showed that His-178, Asn-181, and Tyr-183 were close to FMN in the active site. The NerA mutation H178A produced mutant protein with bound FMN but no activity toward GTN. The N181A mutation produced protein that did not bind FMN and was isolated in partly degraded form. The mutation Y183F produced active protein with the same k cat as that of wild-type enzyme but with altered Km values for GTN and NADH, indicating a role for this residue in substrate binding. Correlation of the ratio of Km GTN to Km NAD(P)H, with sequence differences for NerA and several other members of the OYE family of oxidoreductases that reduce GTN, indicated that Asn-181 and a second Asn-238 that lies close to Tyr-183 in the NerA model structure may influence substrate specificity.


1998 ◽  
Vol 180 (5) ◽  
pp. 1129-1134 ◽  
Author(s):  
Kavita Singh-Wissmann ◽  
Cheryl Ingram-Smith ◽  
Rebecca D. Miles ◽  
James G. Ferry

ABSTRACT Acetate kinase catalyzes the reversible phosphorylation of acetate (CH3COO− + ATP⇄CH3CO2PO3 2− + ADP). A mechanism which involves a covalent phosphoryl-enzyme intermediate has been proposed, and chemical modification studies of the enzyme from Escherichia coli indicate an unspecified glutamate residue is phosphorylated (J. A. Todhunter and D. L. Purich, Biochem. Biophys. Res. Commun. 60:273–280, 1974). Alignment of the amino acid sequences for the acetate kinases from E. coli (Bacteria domain), Methanosarcina thermophila (Archaea domain), and four other phylogenetically divergent microbes revealed high identity which included five glutamates. These glutamates were replaced in theM. thermophila enzyme to determine if any are essential for catalysis. The histidine-tagged altered enzymes were produced inE. coli and purified to electrophoretic homogeneity by metal affinity chromatography. Replacements of E384 resulted in either undetectable or extremely low kinase activity, suggesting E384 is essential for catalysis which supports the proposed mechanism. Replacement of E385 influenced the Km values for acetate and ATP with only moderate decreases ink cat, which suggests that this residue is involved in substrate binding but not catalysis. The unaltered acetate kinase was not inactivated by N-ethylmaleimide; however, replacement of E385 with cysteine conferred sensitivity toN-ethylmaleimide which was prevented by preincubation with acetate, acetyl phosphate, ATP, or ADP, suggesting that E385 is located near the active site. Replacement of E97 decreased theKm value for acetate but not ATP, suggesting this residue is involved in binding acetate. Replacement of either E32 or E334 had no significant effects on the kinetic constants, which indicates that neither residue is essential for catalysis or significantly influences the binding of acetate or ATP.


Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1177
Author(s):  
Colleen Varaidzo Manyumwa ◽  
Özlem Tastan Bishop

Accelerated CO2 sequestration uses carbonic anhydrases (CAs) as catalysts; thus, there is much research on these enzymes. The γ-CA from Escherichia coli (EcoCA-γ) was the first γ-CA to display an active site that switches between “open” and “closed” states through Zn2+ coordination by the proton-shuttling His residue. Here, we explored this occurrence in γ-CAs from hydrothermal vent bacteria and also the γ-CA from Methanosarcina thermophila (Cam) using molecular dynamics. Ten sequences were analyzed through multiple sequence alignment and motif analysis, along with three others from a previous study. Conservation of residues and motifs was high, and phylogeny indicated a close relationship amongst the sequences. All structures, like EcoCA-γ, had a long loop harboring the proton-shuttling residue. Trimeric structures were modeled and simulated for 100 ns at 423 K, with all the structures displaying thermostability. A shift between “open” and “closed” active sites was observed in the 10 models simulated through monitoring the behavior of the His proton-shuttling residue. Cam, which has two Glu proton shuttling residues on long loops (Glu62 and Glu84), also showed an active site switch affected by the first Glu proton shuttle, Glu62. This switch was thus concluded to be common amongst γ-CAs and not an isolated occurrence.


1986 ◽  
Vol 56 (03) ◽  
pp. 349-352 ◽  
Author(s):  
A Tripodi ◽  
A Krachmalnicoff ◽  
P M Mannucci

SummaryFour members of an Italian family (two with histories of venous thromboembolism) had a qualitative defect of antithrombin III reflected by normal antigen concentrations and halfnormal antithrombin activity with or without heparin. Anti-factor Xa activities were consistently borderline low (about 70% of normal). For the propositus’ plasma and serum the patterns of antithrombin III in crossed-immunoelectrophoresis with or without heparin were indistinguishable from those of normal plasma or serum. A normal affinity of antithrombin III for heparin was documented by heparin-sepharose chromatography. Affinity adsorption of the propositus’ plasma to human α-thrombin immobilized on sepharose beads revealed defective binding of the anti thrombin III to thrombin-sepharose. Hence the molecular defect of this variant appears to be at the active site responsible for binding and neutralizing thrombin, thus accounting for the low thrombin inhibitory activity.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


Sign in / Sign up

Export Citation Format

Share Document