scholarly journals The Pseudomonas Quorum-Sensing Regulator RsaL Belongs to the Tetrahelical Superclass of H-T-H Proteins

2006 ◽  
Vol 189 (5) ◽  
pp. 1922-1930 ◽  
Author(s):  
Giordano Rampioni ◽  
Fabio Polticelli ◽  
Iris Bertani ◽  
Karima Righetti ◽  
Vittorio Venturi ◽  
...  

ABSTRACT In the opportunistic human pathogen Pseudomonas aeruginosa, quorum sensing (QS) is crucial for virulence. The RsaL protein directly represses the transcription of lasI, the synthase gene of the main QS signal molecule. On the basis of sequence homology, RsaL cannot be predicted to belong to any class of characterized DNA-binding proteins. In this study, an in silico model of the RsaL structure was inferred showing that RsaL belongs to the tetrahelical superclass of helix-turn-helix proteins. The overall structure of RsaL is very similar to the N-terminal domain of the lambda cI repressor and to the POU-specific domain of the mammalian transcription factor Oct-1 (Oct-1 POUs). Moreover, residues of Oct-1 POUs important for structural stability and/or DNA binding are conserved in the same positions in RsaL and in its homologs found in GenBank. These residues were independently replaced with Ala, and the activities of the mutated variants of RsaL were compared to that of the wild-type counterpart in vivo by complementation assays and in vitro by electrophoretic mobility shift assays. The results validated the RsaL in silico model and showed that residues Arg 20, Gln 38, Ser 42, Arg 43, and Glu 45 are important for RsaL function. Our data indicate that RsaL could be the founding member of a new protein family within the tetrahelical superclass of helix-turn-helix proteins. Finally, the minimum DNA sequence required for RsaL binding on the lasI promoter was determined, and our data support the hypothesis that RsaL binds DNA as a dimer.

Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 401
Author(s):  
Pauline Nogaret ◽  
Fatima El El Garah ◽  
Anne-Béatrice Blanc-Potard

The opportunistic human pathogen Pseudomonas aeruginosa is responsible for a variety of acute infections and is a major cause of mortality in chronically infected cystic fibrosis patients. Due to increased resistance to antibiotics, new therapeutic strategies against P. aeruginosa are urgently needed. In this context, we aimed to develop a simple vertebrate animal model to rapidly assess in vivo drug efficacy against P. aeruginosa. Zebrafish are increasingly considered for modeling human infections caused by bacterial pathogens, which are commonly microinjected in embryos. In the present study, we established a novel protocol for zebrafish infection by P. aeruginosa based on bath immersion in 96-well plates of tail-injured embryos. The immersion method, followed by a 48-hour survey of embryo viability, was first validated to assess the virulence of P. aeruginosa wild-type PAO1 and a known attenuated mutant. We then validated its relevance for antipseudomonal drug testing by first using a clinically used antibiotic, ciprofloxacin. Secondly, we used a novel quorum sensing (QS) inhibitory molecule, N-(2-pyrimidyl)butanamide (C11), the activity of which had been validated in vitro but not previously tested in any animal model. A significant protective effect of C11 was observed on infected embryos, supporting the ability of C11 to attenuate in vivo P. aeruginosa pathogenicity. In conclusion, we present here a new and reliable method to compare the virulence of P. aeruginosa strains in vivo and to rapidly assess the efficacy of clinically relevant drugs against P. aeruginosa, including new antivirulence compounds.


Microbiology ◽  
2005 ◽  
Vol 151 (2) ◽  
pp. 373-383 ◽  
Author(s):  
Thomas Bjarnsholt ◽  
Peter Østrup Jensen ◽  
Mette Burmølle ◽  
Morten Hentzer ◽  
Janus A. J. Haagensen ◽  
...  

The opportunistic human pathogen Pseudomonas aeruginosa is the predominant micro-organism of chronic lung infections in cystic fibrosis (CF) patients. P. aeruginosa colonizes the CF lungs by forming biofilm structures in the alveoli. In the biofilm mode of growth the bacteria are highly tolerant to otherwise lethal doses of antibiotics and are protected from bactericidal activity of polymorphonuclear leukocytes (PMNs). P. aeruginosa controls the expression of many of its virulence factors by means of a cell–cell communication system termed quorum sensing (QS). In the present report it is demonstrated that biofilm bacteria in which QS is blocked either by mutation or by administration of QS inhibitory drugs are sensitive to treatment with tobramycin and H2O2, and are readily phagocytosed by PMNs, in contrast to bacteria with functional QS systems. In contrast to the wild-type, QS-deficient biofilms led to an immediate respiratory-burst activation of the PMNs in vitro. In vivo QS-deficient mutants provoked a higher degree of inflammation. It is suggested that quorum signals and QS-inhibitory drugs play direct and opposite roles in this process. Consequently, the faster and highly efficient clearance of QS-deficient bacteria in vivo is probably a two-sided phenomenon: down regulation of virulence and activation of the innate immune system. These data also suggest that a combination of the action of PMNs and QS inhibitors along with conventional antibiotics would eliminate the biofilm-forming bacteria before a chronic infection is established.


1989 ◽  
Vol 9 (11) ◽  
pp. 4706-4712
Author(s):  
A H Siddiqui ◽  
M C Brandriss

The PUT1 and PUT2 genes encoding the enzymes of the proline utilization pathway of Saccharomyces cerevisiae are induced by proline and activated by the product of the PUT3 gene. Two upstream activation sequences (UASs) in the PUT1 promoter were identified by homology to the PUT2 UAS. Deletion analysis of the two PUT1 UASs showed that they were functionally independent and additive in producing maximal levels of gene expression. The consensus PUT UAS is a 21-base-pair partially palindromic sequence required in vivo for induction of both genes. The results of a gel mobility shift assay demonstrated that the proline-specific UAS is the binding site of a protein factor. In vitro complex formation was observed in crude extracts of yeast strains carrying either a single genomic copy of the PUT3 gene or the cloned PUT3 gene on a 2 microns plasmid, and the binding was dosage dependent. DNA-binding activity was not observed in extracts of strains carrying either a put3 mutation that caused a noninducible (Put-) phenotype or a deletion of the gene. Wild-type levels of complex formation were observed in an extract of a strain carrying an allele of PUT3 that resulted in a constitutive (Put+) phenotype. Extracts from a strain carrying a PUT3-lacZ gene fusion formed two complexes of slower mobility than the wild-type complex. We conclude that the PUT3 product is either a DNA-binding protein or part of a DNA-binding complex that recognizes the UASs of both PUT1 and PUT2. Binding was observed in extracts of a strain grown in the presence or absence of proline, demonstrating the constitutive nature of the DNA-protein interaction.


2019 ◽  
Vol 131 ◽  
pp. 128-134 ◽  
Author(s):  
Sairengpuii Hnamte ◽  
Paramanantham Parasuraman ◽  
Sampathkumar Ranganathan ◽  
Dinakara Rao Ampasala ◽  
Dhanasekhar Reddy ◽  
...  

2001 ◽  
Vol 276 (50) ◽  
pp. 47664-47670 ◽  
Author(s):  
Woo-Jin Chang ◽  
Rafael Alvarez-Gonzalez

Recent studies suggest that the synthesis of protein-bound ADP-ribose polymers catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1) regulates eucaryotic gene expression, including the NF-κB-dependent pathway. Here, we report the molecular mechanism by which PARP-1 activates the sequence-specific binding of NF-κB to its oligodeoxynucleotide. We co-incubated pure recombinant human PARP-1 and the p50 subunit of NF-κB (NF-κB-p50) in the presence or absence of βNAD+in vitro.Electrophoretic mobility shift assays showed that, when PARP-1 was present, NF-κB-p50 DNA binding was dependent on the presence of βNAD+. DNA binding by NF-κB-p50 was not efficient in the absence of βNAD+. In fact, the binding was not efficient in the presence of 3-aminobenzamide (3-AB) either. Thus, we conclude that NF-κB-p50 DNA binding is protein-poly(ADP-ribosyl)ation dependent. Co-immunoprecipitation and immunoblot analysis revealed that PARP-1 physically interacts with NF-κB-p50 with high specificity in the absence of βNAD+. Because NF-kB-p50 was not an efficient covalent target for poly(ADP-ribosyl)ation, our results are consistent with the conclusion that the auto-poly(ADP-ribosyl)ation reaction catalyzed by PARP-1 facilitates the binding of NF-κB-p50 to its DNA by inhibiting the specific protein·protein interactions between NF-κB-p50 and PARP-1. We also report the activation of NF-κB DNA binding by the automodification reaction of PARP-1 in cultured HeLa cells following exposure to H2O2. In these experiments, preincubation of HeLa cells with 3-AB, prior to oxidative damage, strongly inhibited NF-κB activationin vivoas well.


2007 ◽  
Vol 75 (10) ◽  
pp. 4885-4890 ◽  
Author(s):  
Jeongjoon Choi ◽  
Dongwoo Shin ◽  
Sangryeol Ryu

ABSTRACT Despite the fact that the regulatory system sensing density of cell population and its signaling molecule have been identified in Salmonella enterica, the biological significance of this phenomenon termed as quorum sensing remains unknown. In this report, we provide evidence that the luxS gene is necessary for Salmonella virulence phenotypes. Transcription assays showed that the cell-density-dependent induction of the invF gene was abolished in a Salmonella strain with the luxS gene deleted. The effect of the luxS deletion was also investigated in other InvF-regulated genes expressed from Salmonella pathogenicity island 1 (SPI-1). The decreased expression of SPI-1 genes in the strain with luxS deleted could be restored by either the addition of a synthetic signal molecule or the introduction of a plasmid copy of the luxS gene. Thus, the reduced expression of invF and its regulated genes in Salmonella cells lacking quorum sensing resulted in the attenuation of virulence phenotypes both in vitro and in vivo.


2019 ◽  
Vol 226 ◽  
pp. 19-26 ◽  
Author(s):  
Jobina Rajkumari ◽  
Subhomoi Borkotoky ◽  
Dhanasekhar Reddy ◽  
Saswat Kumar Mohanty ◽  
Ranjith Kumavath ◽  
...  

1999 ◽  
Vol 19 (4) ◽  
pp. 3051-3061 ◽  
Author(s):  
Wei-Fang Shen ◽  
Sophia Rozenfeld ◽  
Angela Kwong ◽  
Laszlo G. Kömüves ◽  
H. Jeffrey Lawrence ◽  
...  

ABSTRACT Aberrant activation of the HOX, MEIS, and PBX homeodomain protein families is associated with leukemias, and retrovirally driven coexpression of HOXA9 and MEIS1 is sufficient to induce myeloid leukemia in mice. Previous studies have demonstrated that HOX-9 and HOX-10 paralog proteins are unique among HOX homeodomain proteins in their capacity to form in vitro cooperative DNA binding complexes with either the PBX or MEIS protein. Furthermore, PBX and MEIS proteins have been shown to form in vivo heterodimeric DNA binding complexes with each other. We now show that in vitro DNA site selection for MEIS1 in the presence of HOXA9 and PBX yields a consensus PBX-HOXA9 site. MEIS1 enhances in vitro HOXA9-PBX protein complex formation in the absence of DNA and forms a trimeric electrophoretic mobility shift assay (EMSA) complex with these proteins on an oligonucleotide containing a PBX-HOXA9 site. Myeloid cell nuclear extracts produce EMSA complexes which appear to contain HOXA9, PBX2, and MEIS1, while immunoprecipitation of HOXA9 from these extracts results in coprecipitation of PBX2 and MEIS1. In myeloid cells, HOXA9, MEIS1, and PBX2 are all strongly expressed in the nucleus, where a portion of their signals are colocalized within nuclear speckles. However, cotransfection of HOXA9 and PBX2 with or without MEIS1 minimally influences transcription of a reporter gene containing multiple PBX-HOXA9 binding sites. Taken together, these data suggest that in myeloid leukemia cells MEIS1 forms trimeric complexes with PBX and HOXA9, which in turn can bind to consensus PBX-HOXA9 DNA targets.


2019 ◽  
Author(s):  
Hector Gabriel Morales-Filloy ◽  
Yaqing Zhang ◽  
Gabriele Nübel ◽  
Shilpa Elizabeth George ◽  
Natalya Korn ◽  
...  

1AbstractNicotinamide adenosine dinucleotide (NAD) has been found to be covalently attached to the 5’-ends of specific RNAs in many different organisms, but the physiological consequences of this modification are largely unknown. Here we report the occurrence of several NAD-RNAs in the opportunistic human pathogen Staphylococcus aureus. Most prominently, RNAIII, a central quorum-sensing regulator of this bacterium’s physiology, was found to be 5’-NAD-capped to a significant extent. NAD incorporation efficiency into RNAIII was found to depend in vivo on the −1 position of the P3 promoter. Reduction of RNAIII’s NAD content led to a decreased expression of alpha- and delta-toxins, resulting in reduced cytotoxicity of the modified strains. These effects to not seem to be due to changes in RNAIII’s secondary structure upon NAD attachment, as indicated by largely unaltered patterns in in vitro chemical probing experiments. Our study represents a large step towards establishing a biological function of the 5’-NAD cap, which for RNAIII in S. aureus is to modulate the expression of virulence factors.2ImportanceNumerous organisms, including bacteria, are endowed with a 5’-NAD cap in specific RNAs. While the presence of the 5’-NAD cap modulates the stability of the modified RNA species, a significant biological function and phenotype have not been assigned so far. Here, we show the presence of a 5’-NAD cap in RNAIII from S. aureus, a dual-function regulatory RNA involved in quorum-sensing processes and regulation of virulence factor expression. We also demonstrate that altering the natural NAD modification ratio of RNAIII leads to a decrease in exotoxin production, thereby modulating bacterium’s virulence. Our work unveils a new layer of regulation of RNAIII and the agr system that might be linked to the redox state of the NAD molecule in the cell.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Mikkel Christensen ◽  
Piotr Jablonski ◽  
Bjørn Altermark ◽  
Knut Irgum ◽  
Hilde Hansen

Abstract Background Several members of the bacterial Halomonadacea family are natural producers of polyhydroxyalkanoates (PHA), which are promising materials for use as biodegradable bioplastics. Type-strain species of Cobetia are designated PHA positive, and recent studies have demonstrated relatively high PHA production for a few strains within this genus. Industrially relevant PHA producers may therefore be present among uncharacterized or less explored members. In this study, we characterized PHA production in two marine Cobetia strains. We further analyzed their genomes to elucidate pha genes and metabolic pathways which may facilitate future optimization of PHA production in these strains. Results Cobetia sp. MC34 and Cobetia marina DSM 4741T were mesophilic, halotolerant, and produced PHA from four pure substrates. Sodium acetate with- and without co-supplementation of sodium valerate resulted in high PHA production titers, with production of up to 2.5 g poly(3-hydroxybutyrate) (PHB)/L and 2.1 g poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/L in Cobetia sp. MC34, while C. marina DSM 4741T produced 2.4 g PHB/L and 3.7 g PHBV/L. Cobetia marina DSM 4741T also showed production of 2.5 g PHB/L from glycerol. The genome of Cobetia sp. MC34 was sequenced and phylogenetic analyses revealed closest relationship to Cobetia amphilecti. PHA biosynthesis genes were located at separate loci similar to the arrangement in other Halomonadacea. Further genome analyses revealed some differences in acetate- and propanoate metabolism genes between the two strains. Interestingly, only a single PHA polymerase gene (phaC2) was found in Cobetia sp. MC34, in contrast to two copies (phaC1 and phaC2) in C. marina DSM 4741T. In silico analyses based on phaC genes show that the PhaC2 variant is conserved in Cobetia and contains an extended C-terminus with a high isoelectric point and putative DNA-binding domains. Conclusions Cobetia sp. MC34 and C. marina DSM 4741T are natural producers of PHB and PHBV from industrially relevant pure substrates including acetate. However, further scale up, optimization of growth conditions, or use of metabolic engineering is required to obtain industrially relevant PHA production titers. The putative role of the Cobetia PhaC2 variant in DNA-binding and the potential implications remains to be addressed by in vitro- or in vivo methods.


Sign in / Sign up

Export Citation Format

Share Document