scholarly journals Role of the Nfo and ExoA Apurinic/Apyrimidinic Endonucleases in Repair of DNA Damage during Outgrowth of Bacillus subtilis Spores

2008 ◽  
Vol 190 (6) ◽  
pp. 2031-2038 ◽  
Author(s):  
Juan R. Ibarra ◽  
Alma D. Orozco ◽  
Juan A. Rojas ◽  
Karina López ◽  
Peter Setlow ◽  
...  

ABSTRACT Germination and outgrowth are critical steps for returning Bacillus subtilis spores to life. However, oxidative stress due to full hydration of the spore core during germination and activation of metabolism in spore outgrowth may generate oxidative DNA damage that in many species is processed by apurinic/apyrimidinic (AP) endonucleases. B. subtilis spores possess two AP endonucleases, Nfo and ExoA; the outgrowth of spores lacking both of these enzymes was slowed, and the spores had an elevated mutation frequency, suggesting that these enzymes repair DNA lesions induced by oxidative stress during spore germination and outgrowth. Addition of H2O2 also slowed the outgrowth of nfo exoA spores and increased the mutation frequency, and nfo and exoA mutations slowed the outgrowth of spores deficient in either RecA, nucleotide excision repair (NER), or the DNA-protective α/β-type small acid-soluble spore proteins (SASP). These results suggest that α/β-type SASP protect DNA of germinating spores against damage that can be repaired by Nfo and ExoA, which is generated either spontaneously or promoted by addition of H2O2. The contribution of RecA and Nfo/ExoA was similar to but greater than that of NER in repair of DNA damage generated during spore germination and outgrowth. However, nfo and exoA mutations increased the spontaneous mutation frequencies of outgrown spores lacking uvrA or recA to about the same extent, suggesting that DNA lesions generated during spore germination and outgrowth are processed by Nfo/ExoA in combination with NER and/or RecA. These results suggest that Nfo/ExoA, RecA, the NER system, and α/β-type SASP all contribute to the repair of and/or protection against oxidative damage of DNA in germinating and outgrowing spores.

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Yi-Chih Tsai ◽  
Yi-Hsiang Wang ◽  
Yin-Chang Liu

UVC irradiation-caused DNA lesions are repaired in mammalian cells solely by nucleotide excision repair (NER), which consists of sequential events including initial damage recognition, dual incision of damage site, gap-filling, and ligation. We have previously shown that gap-filling during the repair of UV-induced DNA lesions may be delayed by a subsequent treatment of oxidants or prooxidants such as hydrogen peroxide, flavonoids, and colcemid. We considered the delay as a result of competition for limiting protein/enzyme factor(s) during repair synthesis between NER and base excision repair (BER) induced by the oxidative chemicals. In this report, using colcemid as oxidative stress inducer, we showed that colcemid-caused delay of gap-filling during the repair of UV-induced DNA lesions was attenuated by overexpression of PCNA but not ligase-I. PCNA knockdown, as expected, delayed the gap-filling of NER but also impaired the repair of oxidative DNA damage. Fen-1 knockdown, however, did not affect the repair of oxidative DNA damage, suggesting repair of oxidative DNA damage is not of long patch BER. Furthermore, overexpression of XRCC1 delayed the gap-filling, and presumably increase of XRCC1 pulls PCNA away from gap-filling of NER for BER, consistent with our hypothesis that delay of gap-filling of NER attributes the competition between NER and BER.


2006 ◽  
Vol 188 (6) ◽  
pp. 2285-2289 ◽  
Author(s):  
Francisco X. Castellanos-Juárez ◽  
Carlos Álvarez-Álvarez ◽  
Ronald E. Yasbin ◽  
Barbara Setlow ◽  
Peter Setlow ◽  
...  

ABSTRACT ytkD and mutT of Bacillus subtilis encode potential 8-oxo-dGTPases that can prevent the mutagenic effects of 8-oxo-dGTP. Loss of YtkD but not of MutT increased the spontaneous mutation frequency of growing cells. However, cells lacking both YtkD and MutT had a higher spontaneous mutation frequency than cells lacking YtkD. Loss of either YtkD or MutT sensitized growing cells to hydrogen peroxide (H2O2) and t-butylhydroperoxide (t-BHP), and the lack of both proteins sensitized growing cells to these agents even more. In contrast, B. subtilis spores lacking YtkD and MutT were not sensitized to H2O2, t-BHP, or heat. These results suggest (i) that YtkD and MutT play an antimutator role and protect growing cells of B. subtilis against oxidizing agents, and (ii) that neither YtkD nor MutT protects spores against potential DNA damage induced by oxidative stress or heat.


2020 ◽  
Author(s):  
Juan Miguel Baquero ◽  
Carlos Benítez-Buelga ◽  
Varshni Rajagopal ◽  
Zhao Zhenjun ◽  
Raúl Torres-Ruiz ◽  
...  

Abstract Background: The most common oxidative DNA lesion is 8-oxoguanine (8-oxoG) which is mainly recognized and excised by the glycosylase OGG1, initiating the Base Excision Repair (BER) pathway. Telomeres are particularly sensitive to oxidative stress which disrupts telomere homeostasis triggering genome instability. Methods: We used U2OS OGG1-GFP osteosarcoma cell line to study the role of OGG1 at the telomeres in response to oxidative stress. Next, we investigated the effects of inactivating pharmacologically the BER during oxidative stress (OS) conditions by using a specific small molecule inhibitor of OGG1 (TH5487) in different human cell lines. Results: We have found that during OS, TH5487 effectively blocks BER initiation at telomeres causing accumulation of oxidized bases at this region, correlating with other phenotypes such as telomere losses, micronuclei formation and mild proliferation defects. Besides, the antimetabolite Methotrexate synergizes with TH5487 through induction of intracellular ROS formation, which potentiates TH5487 mediated telomere and genome instability in different cell lines. Conclusions: Our findings demonstrate that OGG1 is required to protect telomeres from OS and present OGG1 inhibitors as a tool to induce oxidative DNA damage at telomeres, with the potential for developing new combination therapies for cancer treatment.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1671 ◽  
Author(s):  
Marios G. Krokidis ◽  
Mariarosaria D’Errico ◽  
Barbara Pascucci ◽  
Eleonora Parlanti ◽  
Annalisa Masi ◽  
...  

Cockayne Syndrome (CS) is an autosomal recessive neurodegenerative premature aging disorder associated with defects in nucleotide excision repair (NER). Cells from CS patients, with mutations in CSA or CSB genes, present elevated levels of reactive oxygen species (ROS) and are defective in the repair of a variety of oxidatively generated DNA lesions. In this study, six purine lesions were ascertained in wild type (wt) CSA, defective CSA, wtCSB and defective CSB-transformed fibroblasts under different oxygen tensions (hyperoxic 21%, physioxic 5% and hypoxic 1%). In particular, the four 5′,8-cyclopurine (cPu) and the two 8-oxo-purine (8-oxo-Pu) lesions were accurately quantified by LC-MS/MS analysis using isotopomeric internal standards after an enzymatic digestion procedure. cPu levels were found comparable to 8-oxo-Pu in all cases (3–6 lesions/106 nucleotides), slightly increasing on going from hyperoxia to physioxia to hypoxia. Moreover, higher levels of four cPu were observed under hypoxia in both CSA and CSB-defective cells as compared to normal counterparts, along with a significant enhancement of 8-oxo-Pu. These findings revealed that exposure to different oxygen tensions induced oxidative DNA damage in CS cells, repairable by NER or base excision repair (BER) pathways. In NER-defective CS patients, these results support the hypothesis that the clinical neurological features might be connected to the accumulation of cPu. Moreover, the elimination of dysfunctional mitochondria in CS cells is associated with a reduction in the oxidative DNA damage.


2008 ◽  
Vol 29 (3) ◽  
pp. 794-807 ◽  
Author(s):  
Lyra M. Griffiths ◽  
Dan Swartzlander ◽  
Kellen L. Meadows ◽  
Keith D. Wilkinson ◽  
Anita H. Corbett ◽  
...  

ABSTRACT DNAs harbored in both nuclei and mitochondria of eukaryotic cells are subject to continuous oxidative damage resulting from normal metabolic activities or environmental insults. Oxidative DNA damage is primarily reversed by the base excision repair (BER) pathway, initiated by N-glycosylase apurinic/apyrimidinic (AP) lyase proteins. To execute an appropriate repair response, BER components must be distributed to accommodate levels of genotoxic stress that may vary considerably between nuclei and mitochondria, depending on the growth state and stress environment of the cell. Numerous examples exist where cells respond to signals, resulting in relocalization of proteins involved in key biological transactions. To address whether such dynamic localization contributes to efficient organelle-specific DNA repair, we determined the intracellular localization of the Saccharomyces cerevisiae N-glycosylase/AP lyases, Ntg1 and Ntg2, in response to nuclear and mitochondrial oxidative stress. Fluorescence microscopy revealed that Ntg1 is differentially localized to nuclei and mitochondria, likely in response to the oxidative DNA damage status of the organelle. Sumoylation is associated with targeting of Ntg1 to nuclei containing oxidative DNA damage. These studies demonstrate that trafficking of DNA repair proteins to organelles containing high levels of oxidative DNA damage may be a central point for regulating BER in response to oxidative stress.


2020 ◽  
Author(s):  
Juan Miguel Baquero ◽  
Carlos Benítez-Buelga ◽  
Varshni Rajagopal ◽  
Zhao Zhenjun ◽  
Raúl Torres-Ruiz ◽  
...  

Abstract Background: The most common oxidative DNA lesion is 8-oxoguanine (8-oxoG) which is mainly recognized and excised by the glycosylase OGG1, initiating the Base Excision Repair (BER) pathway. Telomeres are particularly sensitive to oxidative stress which disrupts telomere homeostasis triggering genome instability. Methods: We used U2OS OGG1-GFP osteosarcoma cell line to study the role of OGG1 at the telomeres in response to oxidative stress. Next, we investigated the effects of inactivating pharmacologically the BER during oxidative stress (OS) conditions by using a specific small molecule inhibitor of OGG1 (TH5487) in different human cell lines. Results: We have found that during OS, TH5487 effectively blocks BER initiation at telomeres causing accumulation of oxidized bases at this region, correlating with other phenotypes such as telomere losses, micronuclei formation and mild proliferation defects. Besides, the antimetabolite Methotrexate synergizes with TH5487 through induction of intracellular ROS formation, which potentiates TH5487 mediated telomere and genome instability in different cell lines. Conclusions: Our findings demonstrate that OGG1 is required to protect telomeres from OS and present OGG1 inhibitors as a tool to induce oxidative DNA damage at telomeres, with the potential for developing new combination therapies for cancer treatment.


2019 ◽  
Vol 476 (24) ◽  
pp. 3791-3804 ◽  
Author(s):  
Steven Cupello ◽  
Yunfeng Lin ◽  
Shan Yan

Oxidative DNA damage represents one of the most abundant DNA lesions. It remains unclear how DNA repair and DNA damage response (DDR) pathways are co-ordinated and regulated following oxidative stress. While XRCC1 has been implicated in DNA repair, it remains unknown how exactly oxidative DNA damage is repaired and sensed by XRCC1. In this communication, we have demonstrated evidence that XRCC1 is dispensable for ATR-Chk1 DDR pathway following oxidative stress in Xenopus egg extracts. Whereas APE2 is essential for SSB repair, XRCC1 is not required for the repair of defined SSB and gapped plasmids with a 5′-OH or 5′-P terminus, suggesting that XRCC1 and APE2 may contribute to SSB repair via different mechanisms. Neither Polymerase beta nor Polymerase alpha is important for the repair of defined SSB structure. Nonetheless, XRCC1 is important for the repair of DNA damage following oxidative stress. Our observations suggest distinct roles of XRCC1 for genome integrity in oxidative stress in Xenopus egg extracts.


2014 ◽  
Vol 306 (3) ◽  
pp. C221-C229 ◽  
Author(s):  
Moises Torres-Gonzalez ◽  
Thomas Gawlowski ◽  
Heidi Kocalis ◽  
Brian T. Scott ◽  
Wolfgang H. Dillmann

The mitochondrial DNA base modification 8-hydroxy 2′-deoxyguanine (8-OHdG) is one of the most common DNA lesions induced by reactive oxygen species (ROS) and is considered an index of DNA damage. High levels of mitochondrial 8-OHdG have been correlated with increased mutation, deletion, and loss of mitochondrial (mt) DNA, as well as apoptosis. 8-Oxoguanosine DNA glycosylase-1 (OGG1) recognizes and removes 8-OHdG to prevent further DNA damage. We evaluated the effects of OGG1 on mtDNA damage, mitochondrial function, and apoptotic events induced by oxidative stress using H9C2 cardiac cells treated with menadione and transduced with either Adv-Ogg1 or Adv-Control (empty vector). The levels of mtDNA 8-OHdG and the presence of apurinic/apyrimidinic (AP) sites were decreased by 30% and 35%, respectively, in Adv-Ogg1 transduced cells ( P < 0.0001 and P < 0.005, respectively). In addition, the expression of base excision repair (BER) pathway members APE1 and DNA polymerase γ was upregulated by Adv-Ogg1 transduction. Cells overexpressing Ogg1 had increased membrane potential ( P < 0.05) and decreased mitochondrial fragmentation ( P < 0.005). The mtDNA content was found to be higher in cells with increased OGG1 ( P < 0.005). The protein levels of fission and apoptotic factors such as DRP1, FIS1, cytoplasmic cytochrome c, activated caspase-3, and activated caspase-9 were lower in Adv-Ogg1 transduced cells. These observations suggest that Ogg1 overexpression may be an important mechanism to protect cardiac cells against oxidative stress damage.


Blood ◽  
2005 ◽  
Vol 105 (12) ◽  
pp. 4730-4735 ◽  
Author(s):  
Pål Aukrust ◽  
Luisa Luna ◽  
Thor Ueland ◽  
Rune F. Johansen ◽  
Fredrik Müller ◽  
...  

Abstract Several studies have reported enhanced oxidative stress in patients with HIV infection. An important pathophysiologic consequence of increased oxidative stress is endogenous DNA damage, and the base excision repair pathway is the most important mechanism to withstand such deleterious effects. To investigate the role of base excision repair in HIV infection, we examined 7,8-dihydro-8-oxoguanine (8-oxoG) levels as a marker of oxidative DNA damage and DNA glycosylase activities in CD4+ and CD8+ T cells of HIV-infected patients and controls. These results showed that the HIV-infected patients, particularly those with advanced disease, had increased levels of 8-oxoG in CD4+ T cells and marked declines in DNA glycosylase activity for the repair of oxidative base lesions in these cells. In contrast, CD8+ T cells from HIV-infected patients, with 8-oxoG levels similar to those in healthy controls, showed enhanced capacity to repair oxidative DNA damage. Finally, highly active antiretroviral therapy induced increased glycosylase activity in CD4+ T cells and normalized 8-oxoG levels. This imbalance between the accumulation of oxidative DNA damage and the capacity to repair such lesions in CD4+ T cells may represent a previously unrecognized mechanism involved in the numerical and functional impairment of CD4+ T cells in patients with HIV infection. (Blood. 2005; 105:4730-4735)


Sign in / Sign up

Export Citation Format

Share Document