scholarly journals Occurrence of Two 5-Aminolevulinate Biosynthetic Pathways in Streptomyces nodosus subsp. asukaensis Is Linked with the Production of Asukamycin

2006 ◽  
Vol 188 (14) ◽  
pp. 5113-5123 ◽  
Author(s):  
Miroslav Petříček ◽  
Kateřina Petříčková ◽  
Libor Havlíček ◽  
Jürgen Felsberg

ABSTRACT We report the results of cloning genes for two key biosynthetic enzymes of different 5-aminolevulinic acid (ALA) biosynthetic routes from Streptomyces. The genes encode the glutamyl-tRNAGlu reductase (GluTR) of the C5 pathway and the ALA synthase (ALAS) of the Shemin pathway. While Streptomyces coelicolor A3(2) synthesizes ALA via the C5 route, both pathways are operational in Streptomyces nodosus subsp. asukaensis, a producer of asukamycin. In this strain, the C5 route produces ALA for tetrapyrrole biosynthesis; the ALA formed by the Shemin pathway serves as a precursor of the 2-amino-3-hydroxycyclopent-2-enone moiety (C5N unit), an antibiotic component. The growth of S. nodosus and S. coelicolor strains deficient in the GluTR genes (gtr) is strictly dependent on ALA or heme supplementation, whereas the defect in the ALAS-encoding gene (hemA-asuA) abolishes the asukamycin production in S. nodosus. The recombinant hemA-asuA gene was expressed in Escherichia coli and in Streptomyces, and the encoded enzyme activity was demonstrated both in vivo and in vitro. The hemA-asuA gene is situated within a putative cluster of asukamycin biosynthetic genes. This is the first report about the cloning of genes for two different ALA biosynthetic routes from a single bacterium.

2007 ◽  
Vol 189 (18) ◽  
pp. 6655-6664 ◽  
Author(s):  
Sang Kyun Ahn ◽  
Kapil Tahlan ◽  
Zhou Yu ◽  
Justin Nodwell

ABSTRACT The SCO7222 protein and ActR are two of ∼150 TetR-like transcription factors encoded in the Streptomyces coelicolor genome. Using bioluminescence as a readout, we have developed Escherichia coli-based biosensors that accurately report the regulatory activity of these proteins and used it to investigate their interactions with DNA and small-molecule ligands. We found that the SCO7222 protein and ActR repress the expression of their putative target genes, SCO7223 and actII-ORF2 (actA), respectively, by interacting with operator sequence in the promoters. The operators recognized by the two proteins are related such that O 7223 (an operator for SCO7223) could be bound by both the SCO7222 protein and ActR with similar affinities. In contrast, Oact (an operator for actII-ORF2) was bound tightly by ActR and more weakly by the SCO7222 protein. We demonstrated ligand specificity of these proteins by showing that while TetR (but not ActR or the SCO7222 protein) interacts with tetracyclines, ActR (but not TetR or the SCO7222 protein) interacts with actinorhodin and related molecules. Through operator-targeted mutagenesis, we found that at least two nucleotide changes in O 7223 were required to disrupt its interaction with SCO7222 protein, while ActR was more sensitive to changes on Oact . Most importantly, we found that the interaction of each protein with wild-type and mutant operator sequences in vivo and in vitro correlated perfectly. Our data suggest that E. coli-based biosensors of this type should be broadly applicable to TetR-like transcription factors.


2008 ◽  
Vol 190 (24) ◽  
pp. 7932-7938 ◽  
Author(s):  
Sang Jun Lee ◽  
Dale E. A. Lewis ◽  
Sankar Adhya

ABSTRACT The two optical forms of aldohexose galactose differing at the C-1 position, α-d-galactose and β-d-galactose, are widespread in nature. The two anomers also occur in di- and polysaccharides, as well as in glycoconjugates. The anomeric form of d-galactose, when present in complex carbohydrates, e.g., cell wall, glycoproteins, and glycolipids, is specific. Their interconversion occurs as monomers and is effected by the enzyme mutarotase (aldose-1-epimerase). Mutarotase and other d-galactose-metabolizing enzymes are coded by genes that constitute an operon in Escherichia coli. The operon is repressed by the repressor GalR and induced by d-galactose. Since, depending on the carbon source during growth, the cell can make only one of the two anomers of d-galactose, the cell must also convert one anomer to the other for use in specific biosynthetic pathways. Thus, it is imperative that induction of the gal operon, specifically the mutarotase, be achievable by either anomer of d-galactose. Here we report in vivo and in vitro experiments showing that both α-d-galactose and β-d-galactose are capable of inducing transcription of the gal operon with equal efficiency and kinetics. Whereas all substitutions at the C-1 position in the α configuration inactivate the induction capacity of the sugar, the effect of substitutions in the β configuration varies depending upon the nature of the substitution; methyl and phenyl derivatives induce weakly, but the glucosyl derivative does not.


2010 ◽  
Vol 192 (17) ◽  
pp. 4275-4280 ◽  
Author(s):  
Marcha L. Gatewood ◽  
George H. Jones

ABSTRACT ppGpp regulates gene expression in a variety of bacteria and in plants. We proposed previously that ppGpp or its precursor, pppGpp [referred to collectively as (p)ppGpp], or both might regulate the activity of the enzyme polynucleotide phosphorylase in Streptomyces species. We have examined the effects of (p)ppGpp on the polymerization and phosphorolysis activities of PNPase from Streptomyces coelicolor, Streptomyces antibioticus, and Escherichia coli. We have shown that (p)ppGpp inhibits the activities of both Streptomyces PNPases but not the E. coli enzyme. The inhibition kinetics for polymerization using the Streptomyces enzymes are of the mixed noncompetitive type, suggesting that (p)ppGpp binds to a region other than the active site of the enzyme. ppGpp also inhibited the phosphorolysis of a model RNA substrate derived from the rpsO-pnp operon of S. coelicolor. We have shown further that the chemical stability of mRNA increases during the stationary phase in S. coelicolor and that induction of a plasmid-borne copy of relA in a relA-null mutant increases the chemical stability of bulk mRNA as well. We speculate that the observed inhibition in vitro may reflect a role of ppGpp in the regulation of antibiotic production in vivo.


Author(s):  
Ирина Владимировна Акулина ◽  
Светлана Ивановна Павлова ◽  
Ирина Семеновна Степаненко ◽  
Назира Сунагатовна Карамова ◽  
Александр Владиславович Сергеев ◽  
...  
Keyword(s):  

Проведено токсикологическое исследование соединений с антибактериальными свойствами из группы терпенов ментанового ряда в условиях in vitro и in vivo: лимонена (B34), его производного (+)-1,2-оксида лимонена (B60) и серосодержащего монотерпенового соединения 2-(1’-гидрокси-4’-изопренил-1’-метилциклогексил-2’-тио)метилэтаноата (B65). В условиях in vitro (культура опухолевых клеток HeLa) изучаемые монотерпены в диапазоне концентраций 2 – 200 мкг/мл обладали цитотоксичностью. Ингибирующая концентрация (ИК50) для B34 составила 231 (167 – 295) мкг/мл, для B60 – 181 (105 – 257) мкг/мл, ИК50 B65 – 229 (150 – 308) мкг/мл. Исследование генотоксичности показало, что B34 и B65 в диапазоне концентраций 50 – 1000 мкг/мл не индуцируют SOS мутагенез в клетках Escherichia coli PQ37, тогда как B60 в концентрациях 500 и 1000 мкг/мл проявляет генотоксичность. In vivo в остром эксперименте на беспородных мышах установлена низкая токсичность B34 и его производных при различных путях введения. Наименьший показатель острой токсичности имеет B65, в связи с чем дополнительно на крысах проведено изучение его хронической токсичности. Ежедневное внутрижелудочное введение B65 в разовых дозах, составляющих 1/10 и 1/20 ЛД50 (1000 мг/кг и 500 мг/кг), в течение 1 мес не вызывало гибели животных, значимых нарушений общего состояния, изменения динамики массы тела, морфопатологических изменений. Внутрижелудочное введение B65 крысам в высокой токсической дозе 2000 мг/кг (1/5 ЛД50) в течение месяца вызывает патоморфологические изменения структуры печени.


Genetics ◽  
2000 ◽  
Vol 154 (2) ◽  
pp. 503-512 ◽  
Author(s):  
Hongbo Liu ◽  
Stephen R Hewitt ◽  
John B Hays

Abstract Previous studies have demonstrated that the Escherichia coli MutHLS mismatch-repair system can process UV-irradiated DNA in vivo and that the human MSH2·MSH6 mismatch-repair protein binds more strongly in vitro to photoproduct/base mismatches than to “matched” photoproducts in DNA. We tested the hypothesis that mismatch repair directed against incorrect bases opposite photoproducts might reduce UV mutagenesis, using two alleles at E. coli lacZ codon 461, which revert, respectively, via CCC → CTC and CTT → CTC transitions. F′ lacZ targets were mated from mut+ donors into mutH, mutL, or mutS recipients, once cells were at substantial densities, to minimize spontaneous mutation prior to irradiation. In umu+ mut+ recipients, a range of UV fluences induced lac+ revertant frequencies of 4–25 × 10−8; these frequencies were consistently 2-fold higher in mutH, mutL, or mutS recipients. Since this effect on mutation frequency was unaltered by an Mfd− defect, it appears not to involve transcription-coupled excision repair. In mut+ umuC122::Tn5 bacteria, UV mutagenesis (at 60 J/m2) was very low, but mutH or mutL or mutS mutations increased reversion of both lacZ alleles roughly 25-fold, to 5–10 × 10−8. Thus, at UV doses too low to induce SOS functions, such as Umu2′D, most incorrect bases opposite occasional photoproducts may be removed by mismatch repair, whereas in heavily irradiated (SOS-induced) cells, mismatch repair may only correct some photoproduct/base mismatches, so UV mutagenesis remains substantial.


2021 ◽  
Author(s):  
Jess Vergis ◽  
S V S Malik ◽  
Richa Pathak ◽  
Manesh Kumar ◽  
Nitin V Kurkure ◽  
...  

Abstract High throughput in vivo laboratory models is need for screening and identification of effective therapeutic agents to overcome microbial drug-resistance. This study was undertaken to evaluate in vivo antimicrobial efficacy of short-chain antimicrobial peptide- Cecropin A (1–7)-Melittin (CAMA) against three multi- drug resistant enteroaggregative Escherichia coli (MDR-EAEC) field isolates in a Galleria mellonella larval model. The minimum inhibitory concentration (MIC; 2.0 mg/L) and minimum bactericidal concentration (MBC; 4.0 mg/L) of CAMA were determined by microdilution assay. CAMA was found to be stable at high temperatures, physiological concentration of cationic salts and proteases; safe with sheep erythrocytes, secondary cell lines and commensal lactobacilli at lower MICs; and exhibited membrane permeabilisation. In vitro time-kill assay revealed concentration- and time-dependent clearance of MDR-EAEC in CAMA-treated groups at 30 min. CAMA- treated G. mellonella larvae exhibited an increased survival rate, reduced MDR-EAEC counts, immunomodulatory effect and proved non-toxic which concurred with histopathological findings. CAMA exhibited either an equal or better efficacy than the tested antibiotic control, meropenem. This study highlights the possibility of G. mellonella larvae as an excellent in vivo model for investigating the host-pathogen interaction, including the efficacy of antimicrobials against MDR-EAEC strains.


1987 ◽  
Vol 248 (1) ◽  
pp. 43-51 ◽  
Author(s):  
J Charlier ◽  
R Sanchez

In contrast with most aminoacyl-tRNA synthetases, the lysyl-tRNA synthetase of Escherichia coli is coded for by two genes, the normal lysS gene and the inducible lysU gene. During its purification from E. coli K12, lysyl-tRNA synthetase was monitored by its aminoacylation and adenosine(5′)tetraphospho(5′)adenosine (Ap4A) synthesis activities. Ap4A synthesis was measured by a new assay using DEAE-cellulose filters. The heterogeneity of lysyl-tRNA synthetase (LysRS) was revealed on hydroxyapatite; we focused on the first peak, LysRS1, because of its higher Ap4A/lysyl-tRNA activity ratio at that stage. Additional differences between LysRS1 and LysRS2 (major peak on hydroxyapatite) were collected. LysRS1 was eluted from phosphocellulose in the presence of the substrates, whereas LysRS2 was not. Phosphocellulose chromatography was used to show the increase of LysRS1 in cells submitted to heat shock. Also, the Mg2+ optimum in the Ap4A-synthesis reaction is much higher for LysRS1. LysRS1 showed a higher thermostability, which was specifically enhanced by Zn2+. These results in vivo and in vitro strongly suggest that LysRS1 is the heat-inducible lysU-gene product.


Sign in / Sign up

Export Citation Format

Share Document