scholarly journals The CgrA and CgrC Proteins Form a Complex That Positively RegulatescupAFimbrial Gene Expression in Pseudomonas aeruginosa

2011 ◽  
Vol 193 (22) ◽  
pp. 6152-6161 ◽  
Author(s):  
Heather R. McManus ◽  
Simon L. Dove

The CgrA and CgrC proteins ofPseudomonas aeruginosaare coregulators that are required for the phase-variable expression of thecupAfimbrial genes. Neither CgrA nor CgrC resembles a classical transcription regulator, and precisely how these proteins exert their regulatory effects oncupAgene expression is poorly understood. Here, we show that CgrA and CgrC interact with one another directly. We identify a mutant of CgrC that is specifically defective for interaction with CgrA and demonstrate that this mutant cannot restore the phase-variable expression of thecupAfimbrial genes to cells of acgrCmutant strain. Using this mutant, we also show that CgrC associates with thecupApromoter regardless of whether or not it interacts with CgrA. Our findings establish that interaction between CgrA and CgrC is required for the phase-variable expression of thecupAfimbrial genes and suggest that CgrC exerts its regulatory effects directly at thecupApromoter, possibly by recruiting CgrA. Because the regions of CgrA and CgrC that we have identified as interacting with one another are highly conserved among orthologs, our findings raise the possibility that CgrA- and CgrC-related regulators present in other bacteria function coordinately through a direct protein-protein interaction.

2007 ◽  
Vol 189 (23) ◽  
pp. 8667-8676 ◽  
Author(s):  
Isabelle Vallet-Gely ◽  
Josh S. Sharp ◽  
Simon L. Dove

ABSTRACT The cupA gene cluster of Pseudomonas aeruginosa encodes components and assembly factors of a putative fimbrial structure that enable this opportunistic pathogen to form biofilms on abiotic surfaces. In P. aeruginosa the control of cupA gene expression is complex, with the H-NS-like MvaT protein functioning to repress phase-variable (on/off) expression of the operon. Here we identify four positive regulators of cupA gene expression, including three unusual regulators encoded by the cgrABC genes and Anr, a global regulator of anaerobic gene expression. We show that the cupA genes are expressed in a phase-variable manner under anaerobic conditions and that the cgr genes are essential for this expression. We show further that cgr gene expression is negatively controlled by MvaT and positively controlled by Anr and anaerobiosis. Expression of the cupA genes therefore appears to involve a regulatory cascade in which anaerobiosis, signaled through Anr, stimulates expression of the cgr genes, resulting in a concomitant increase in cupA gene expression. Our findings thus provide mechanistic insight into the regulation of cupA gene expression and identify anaerobiosis as an inducer of phase-variable cupA gene expression, raising the possibility that phase-variable expression of fimbrial genes important for biofilm formation may occur in P. aeruginosa persisting in the largely anaerobic environment of the cystic fibrosis host lung.


2020 ◽  
Vol 27 (33) ◽  
pp. 5530-5542
Author(s):  
Xiaoqing Ye ◽  
Gang Chen ◽  
Jia Jin ◽  
Binzhong Zhang ◽  
Yinda Wang ◽  
...  

Mixed Lineage Leukemia 1 (MLL1), an important member of Histone Methyltransferases (HMT) family, is capable of catalyzing mono-, di-, and trimethylation of Histone 3 lysine 4 (H3K4). The optimal catalytic activity of MLL1 requires the formation of a core complex consisting of MLL1, WDR5, RbBP5, and ASH2L. The Protein-Protein Interaction (PPI) between WDR5 and MLL1 plays an important role in abnormal gene expression during tumorigenesis, and disturbing this interaction may have a potential for the treatment of leukemia harboring MLL1 fusion proteins. In this review, we will summarize recent progress in the development of inhibitors targeting MLL1- WDR5 interaction.


2000 ◽  
Vol 68 (2) ◽  
pp. 871-876 ◽  
Author(s):  
Li Liu ◽  
Kevin Dybvig ◽  
Victor S. Panangala ◽  
Vicky L. van Santen ◽  
Christopher T. French

ABSTRACT Mycoplasma gallisepticum, the cause of chronic respiratory infections in the avian host, possesses a family of M9/pMGA genes encoding an adhesin(s) associated with hemagglutination. Nucleotide sequences of M9/pMGA gene family members indicate extensive sequence similarity in the promoter regions of both the transcribed and silent genes. The mechanism that regulates M9/pMGA gene expression is unknown, but studies have revealed an apparent correlation between gene expression and the number of tandem GAA repeat motifs located upstream of the putative promoter. In this study, transposon Tn4001was used as a vector with the Escherichia coli lacZ gene as the reporter system to examine the role of the GAA repeats in M9/pMGA gene expression in M. gallisepticum. A 336-bp M9 gene fragment (containing the GAA repeat region, the promoter, and the translation start codon) was amplified by PCR, ligated with alacZ gene from E. coli, and inserted into the Tn4001-containing plasmid pISM2062. This construct was transformed into M. gallisepticum PG31. Transformants were filter cloned on agar supplemented with 5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside (X-Gal) to monitor lacZ gene expression on the basis of blue/white color selection. Several cycles of filter cloning resulted in cell lineages in which lacZ gene expression alternated between the On and Off states in successive generations of progeny clones. The promoter regions of the M9-lacZ hybrid genes of individual progeny clones were amplified by PCR and sequenced. The only differences between the promoter regions of the blue and white colonies were in the number of GAA repeats. Clones that expressedlacZ had exactly 12 tandem copies of the GAA repeat. Clones that did not express lacZ invariably had either more than 12 (14 to 16) or fewer than 12 (5 to 11) GAA repeats. Southern analysis of M. gallisepticum chromosomal DNA confirmed that the phase-variable expression of the lacZ reporter gene was not caused by Tn4001 transposition. These data strongly indicate that changes in the length of the GAA repeat region are responsible for regulating M9/pMGA gene expression.


2021 ◽  
Vol 20 ◽  
pp. 153303382098329
Author(s):  
Yujie Weng ◽  
Wei Liang ◽  
Yucheng Ji ◽  
Zhongxian Li ◽  
Rong Jia ◽  
...  

Human epidermal growth factor 2 (HER2)+ breast cancer is considered the most dangerous type of breast cancers. Herein, we used bioinformatics methods to identify potential key genes in HER2+ breast cancer to enable its diagnosis, treatment, and prognosis prediction. Datasets of HER2+ breast cancer and normal tissue samples retrieved from Gene Expression Omnibus and The Cancer Genome Atlas databases were subjected to analysis for differentially expressed genes using R software. The identified differentially expressed genes were subjected to gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses followed by construction of protein-protein interaction networks using the STRING database to identify key genes. The genes were further validated via survival and differential gene expression analyses. We identified 97 upregulated and 106 downregulated genes that were primarily associated with processes such as mitosis, protein kinase activity, cell cycle, and the p53 signaling pathway. Visualization of the protein-protein interaction network identified 10 key genes ( CCNA2, CDK1, CDC20, CCNB1, DLGAP5, AURKA, BUB1B, RRM2, TPX2, and MAD2L1), all of which were upregulated. Survival analysis using PROGgeneV2 showed that CDC20, CCNA2, DLGAP5, RRM2, and TPX2 are prognosis-related key genes in HER2+ breast cancer. A nomogram showed that high expression of RRM2, DLGAP5, and TPX2 was positively associated with the risk of death. TPX2, which has not previously been reported in HER2+ breast cancer, was associated with breast cancer development, progression, and prognosis and is therefore a potential key gene. It is hoped that this study can provide a new method for the diagnosis and treatment of HER2 + breast cancer.


2019 ◽  
Vol 87 (5) ◽  
Author(s):  
Zachary N. Phillips ◽  
Charles Brizuela ◽  
Amy V. Jennison ◽  
Megan Staples ◽  
Keith Grimwood ◽  
...  

ABSTRACTNontypeableHaemophilus influenzae(NTHi) is a major human pathogen, responsible for several acute and chronic infections of the respiratory tract. The incidence of invasive infections caused by NTHi is increasing worldwide. NTHi is able to colonize the nasopharynx asymptomatically, and the exact change(s) responsible for transition from benign carriage to overt disease is not understood. We have previously reported that phase variation (the rapid and reversible ON-OFF switching of gene expression) of particular lipooligosaccharide (LOS) glycosyltransferases occurs during transition from colonizing the nasopharynx to invading the middle ear. Variation in the structure of the LOS is dependent on the ON/OFF expression status of each of the glycosyltransferases responsible for LOS biosynthesis. In this study, we surveyed a collection of invasive NTHi isolates for ON/OFF expression status of seven phase-variable LOS glycosyltransferases. We report that the expression state of the LOS biosynthetic genesoafAON andlic2AOFF shows a correlation with invasive NTHi isolates. We hypothesize that these gene expression changes contribute to the invasive potential of NTHi. OafA expression, which is responsible for the addition of anO-acetyl group onto the LOS, has been shown to impart a phenotype of increased serum resistance and may serve as a marker for invasive NTHi.


2019 ◽  
Vol 87 (10) ◽  
Author(s):  
Franziska S. Birmes ◽  
Ruth Säring ◽  
Miriam C. Hauke ◽  
Niklas H. Ritzmann ◽  
Steffen L. Drees ◽  
...  

ABSTRACT The nosocomial pathogen Pseudomonas aeruginosa regulates its virulence via a complex quorum sensing network, which, besides N-acylhomoserine lactones, includes the alkylquinolone signal molecules 2-heptyl-3-hydroxy-4(1H)-quinolone (Pseudomonas quinolone signal [PQS]) and 2-heptyl-4(1H)-quinolone (HHQ). Mycobacteroides abscessus subsp. abscessus, an emerging pathogen, is capable of degrading the PQS and also HHQ. Here, we show that although M. abscessus subsp. abscessus reduced PQS levels in coculture with P. aeruginosa PAO1, this did not suffice for quenching the production of the virulence factors pyocyanin, pyoverdine, and rhamnolipids. However, the levels of these virulence factors were reduced in cocultures of P. aeruginosa PAO1 with recombinant M. abscessus subsp. massiliense overexpressing the PQS dioxygenase gene aqdC of M. abscessus subsp. abscessus, corroborating the potential of AqdC as a quorum quenching enzyme. When added extracellularly to P. aeruginosa cultures, AqdC quenched alkylquinolone and pyocyanin production but induced an increase in elastase levels. When supplementing P. aeruginosa cultures with QsdA, an enzyme from Rhodococcus erythropolis which inactivates N-acylhomoserine lactone signals, rhamnolipid and elastase levels were quenched, but HHQ and pyocyanin synthesis was promoted. Thus, single quorum quenching enzymes, targeting individual circuits within a complex quorum sensing network, may also elicit undesirable regulatory effects. Supernatants of P. aeruginosa cultures grown in the presence of AqdC, QsdA, or both enzymes were less cytotoxic to human epithelial lung cells than supernatants of untreated cultures. Furthermore, the combination of both aqdC and qsdA in P. aeruginosa resulted in a decline of Caenorhabditis elegans mortality under P. aeruginosa exposure.


2012 ◽  
Vol 79 (2) ◽  
pp. 718-721 ◽  
Author(s):  
F. Heath Damron ◽  
Elizabeth S. McKenney ◽  
Herbert P. Schweizer ◽  
Joanna B. Goldberg

ABSTRACTWe describe a mini-Tn7-based broad-host-range expression cassette for arabinose-inducible gene expression from the PBADpromoter. This delivery vector, pTJ1, can integrate a single copy of a gene into the chromosome of Gram-negative bacteria for diverse genetic applications, of which several are discussed, usingPseudomonas aeruginosaas the model host.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Stephen K. Dolan ◽  
Michael Kohlstedt ◽  
Stephen Trigg ◽  
Pedro Vallejo Ramirez ◽  
Clemens F. Kaminski ◽  
...  

ABSTRACT Pseudomonas aeruginosa is an opportunistic human pathogen, particularly noted for causing infections in the lungs of people with cystic fibrosis (CF). Previous studies have shown that the gene expression profile of P. aeruginosa appears to converge toward a common metabolic program as the organism adapts to the CF airway environment. However, we still have only a limited understanding of how these transcriptional changes impact metabolic flux at the systems level. To address this, we analyzed the transcriptome, proteome, and fluxome of P. aeruginosa grown on glycerol or acetate. These carbon sources were chosen because they are the primary breakdown products of an airway surfactant, phosphatidylcholine, which is known to be a major carbon source for P. aeruginosa in CF airways. We show that the fluxes of carbon throughout central metabolism are radically different among carbon sources. For example, the newly recognized “EDEMP cycle” (which incorporates elements of the Entner-Doudoroff [ED] pathway, the Embden-Meyerhof-Parnas [EMP] pathway, and the pentose phosphate [PP] pathway) plays an important role in supplying NADPH during growth on glycerol. In contrast, the EDEMP cycle is attenuated during growth on acetate, and instead, NADPH is primarily supplied by the reaction catalyzed by isocitrate dehydrogenase(s). Perhaps more importantly, our proteomic and transcriptomic analyses revealed a global remodeling of gene expression during growth on the different carbon sources, with unanticipated impacts on aerobic denitrification, electron transport chain architecture, and the redox economy of the cell. Collectively, these data highlight the remarkable metabolic plasticity of P. aeruginosa; that plasticity allows the organism to seamlessly segue between different carbon sources, maximizing the energetic yield from each. IMPORTANCE Pseudomonas aeruginosa is an opportunistic human pathogen that is well known for causing infections in the airways of people with cystic fibrosis. Although it is clear that P. aeruginosa is metabolically well adapted to life in the CF lung, little is currently known about how the organism metabolizes the nutrients available in the airways. In this work, we used a combination of gene expression and isotope tracer (“fluxomic”) analyses to find out exactly where the input carbon goes during growth on two CF-relevant carbon sources, acetate and glycerol (derived from the breakdown of lung surfactant). We found that carbon is routed (“fluxed”) through very different pathways during growth on these substrates and that this is accompanied by an unexpected remodeling of the cell’s electron transfer pathways. Having access to this “blueprint” is important because the metabolism of P. aeruginosa is increasingly being recognized as a target for the development of much-needed antimicrobial agents.


2017 ◽  
Vol 85 (5) ◽  
Author(s):  
Alexandria A. Reinhart ◽  
Angela T. Nguyen ◽  
Luke K. Brewer ◽  
Justin Bevere ◽  
Jace W. Jones ◽  
...  

ABSTRACT Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that requires iron for virulence. Iron homeostasis is maintained in part by the PrrF1 and PrrF2 small RNAs (sRNAs), which block the expression of iron-containing proteins under iron-depleted conditions. The PrrF sRNAs also promote the production of the Pseudomonas quinolone signal (PQS), a quorum sensing molecule that activates the expression of several virulence genes. The tandem arrangement of the prrF genes allows for expression of a third sRNA, PrrH, which is predicted to regulate gene expression through its unique sequence derived from the prrF1-prrF2 intergenic (IG) sequence (the PrrHIG sequence). Previous studies showed that the prrF locus is required for acute lung infection. However, the individual functions of the PrrF and PrrH sRNAs were not determined. Here, we describe a system for differentiating PrrF and PrrH functions by deleting the PrrHIG sequence [prrF(ΔHIG)]. Our analyses of this construct indicate that the PrrF sRNAs, but not PrrH, are required for acute lung infection by P. aeruginosa. Moreover, we show that the virulence defect of the ΔprrF1-prrF2 mutant is due to decreased bacterial burden during acute lung infection. In vivo analysis of gene expression in lung homogenates shows that PrrF-mediated regulation of genes for iron-containing proteins is disrupted in the ΔprrF1-prrF2 mutant during infection, while the expression of genes that mediate PrrF-regulated PQS production are not affected by prrF deletion in vivo. Combined, these studies demonstrate that regulation of iron utilization plays a critical role in P. aeruginosa's ability to survive during infection.


Sign in / Sign up

Export Citation Format

Share Document