scholarly journals The relA/spoT-Homologous Gene inStreptomyces coelicolor Encodes Both Ribosome-Dependent (p)ppGppSynthesizing and -Degrading Activities

1998 ◽  
Vol 180 (16) ◽  
pp. 4123-4132 ◽  
Author(s):  
Oscar H. Martínez-Costa ◽  
Miguel A. Fernández-Moreno ◽  
Francisco Malpartida

ABSTRACT Streptomyces coelicolor (p)ppGpp synthetase (Rel protein) belongs to the RelA and SpoT (RelA/SpoT) family, which is involved in (p)ppGpp metabolism and the stringent response. The potential functions of the rel gene have been examined.S. coelicolor Rel has been shown to be ribosome associated, and its activity in vitro is ribosome dependent. Analysis in vivo of the active recombinant protein in well-defined Escherichia coli relA and relA/spoT mutants provides evidence thatS. coelicolor Rel, like native E. coli RelA, is functionally ribosome associated, resulting in ribosome-dependent (p)ppGpp accumulation upon amino acid deprivation. Expression of anS. coelicolor C-terminally deleted Rel, comprised of only the first 489 amino acids, catalyzes a ribosome-independent (p)ppGpp formation, in the same manner as the E. colitruncated RelA protein (1 to 455 amino acids). An E. coli relA spoT double deletion mutant transformed with S. coelicolor rel gene suppresses the phenotype associated with (p)ppGpp deficiency. However, in such a strain, arel-mediated (p)ppGpp response apparently occurs after glucose depletion, but only in the absence of amino acids. Analysis of ppGpp decay in E. coli expressing the S. coelicolor rel gene suggests that it also encodes a (p)ppGpp-degrading activity. By deletion analysis, the catalytic domains of S. coelicolor Rel for (p)ppGpp synthesis and degradation have been located within its N terminus (amino acids 267 to 453 and 93 to 397, respectively). In addition,E. coli relA in an S. coelicolor reldeletion mutant restores actinorhodine production and shows a nearly normal morphological differentiation, as does the wild-typerel gene, which is in agreement with the proposed role of (p)ppGpp nucleotides in antibiotic biosynthesis.

2001 ◽  
Vol 183 (10) ◽  
pp. 3193-3203 ◽  
Author(s):  
P. H. Viollier ◽  
K. T. Nguyen ◽  
W. Minas ◽  
M. Folcher ◽  
G. E. Dale ◽  
...  

ABSTRACT The studies of aconitase presented here, along with those of citrate synthase (P. H. Viollier, W. Minas, G. E. Dale, M. Folcher, and C. J. Thompson, J. Bacteriol. 183:3184–3192, 2001), were undertaken to investigate the role of the tricarboxylic acid (TCA) cycle in Streptomyces coelicolor development. A single aconitase activity (AcoA) was detected in protein extracts of cultures during column purification. The deduced amino acid sequence of the cloned acoA gene constituted the N-terminal sequence of semipurified AcoA and was homologous to bacterial A-type aconitases and bifunctional eukaryotic aconitases (iron regulatory proteins). The fact that an acoA disruption mutant (BZ4) did not grow on minimal glucose media in the absence of glutamate confirmed that this gene encoded the primary vegetative aconitase catalyzing flux through the TCA cycle. On glucose-based complete medium, BZ4 had defects in growth, antibiotic biosynthesis, and aerial hypha formation, partially due to medium acidification and accumulation of citrate. The inhibitory effects of acids and citrate on BZ4 were partly suppressed by buffer or by introducing a citrate synthase mutation. However, the fact that growth of an acoA citA mutant remained impaired, even on a nonacidogenic carbon source, suggested alternative functions of AcoA. Immunoblots revealed that AcoA was present primarily during substrate mycelial growth on solid medium. Transcription ofacoA was limited to the early growth phase in liquid cultures from a start site mapped in vitro and in vivo.


2008 ◽  
Vol 190 (18) ◽  
pp. 6134-6147 ◽  
Author(s):  
Shigeo Tojo ◽  
Takenori Satomura ◽  
Kanako Kumamoto ◽  
Kazutake Hirooka ◽  
Yasutaro Fujita

ABSTRACT Branched-chain amino acids are the most abundant amino acids in proteins. The Bacillus subtilis ilv-leu operon is involved in the biosynthesis of branched-chain amino acids. This operon exhibits a RelA-dependent positive stringent response to amino acid starvation. We investigated this positive stringent response upon lysine starvation as well as decoyinine treatment. Deletion analysis involving various lacZ fusions revealed two molecular mechanisms underlying the positive stringent response of ilv-leu, i.e., CodY-dependent and -independent mechanisms. The former is most likely triggered by the decrease in the in vivo concentration of GTP upon lysine starvation, GTP being a corepressor of the CodY protein. So, the GTP decrease derepressed ilv-leu expression through detachment of the CodY protein from its cis elements upstream of the ilv-leu promoter. By means of base substitution and in vitro transcription analyses, the latter (CodY-independent) mechanism was found to comprise the modulation of the transcription initiation frequency, which likely depends on fluctuation of the in vivo RNA polymerase substrate concentrations after stringent treatment, and to involve at least the base species of adenine at the 5′ end of the ilv-leu transcript. As discussed, this mechanism is presumably distinct from that for B. subtilis rrn operons, which involves changes in the in vivo concentration of the initiating GTP.


2007 ◽  
Vol 189 (18) ◽  
pp. 6655-6664 ◽  
Author(s):  
Sang Kyun Ahn ◽  
Kapil Tahlan ◽  
Zhou Yu ◽  
Justin Nodwell

ABSTRACT The SCO7222 protein and ActR are two of ∼150 TetR-like transcription factors encoded in the Streptomyces coelicolor genome. Using bioluminescence as a readout, we have developed Escherichia coli-based biosensors that accurately report the regulatory activity of these proteins and used it to investigate their interactions with DNA and small-molecule ligands. We found that the SCO7222 protein and ActR repress the expression of their putative target genes, SCO7223 and actII-ORF2 (actA), respectively, by interacting with operator sequence in the promoters. The operators recognized by the two proteins are related such that O 7223 (an operator for SCO7223) could be bound by both the SCO7222 protein and ActR with similar affinities. In contrast, Oact (an operator for actII-ORF2) was bound tightly by ActR and more weakly by the SCO7222 protein. We demonstrated ligand specificity of these proteins by showing that while TetR (but not ActR or the SCO7222 protein) interacts with tetracyclines, ActR (but not TetR or the SCO7222 protein) interacts with actinorhodin and related molecules. Through operator-targeted mutagenesis, we found that at least two nucleotide changes in O 7223 were required to disrupt its interaction with SCO7222 protein, while ActR was more sensitive to changes on Oact . Most importantly, we found that the interaction of each protein with wild-type and mutant operator sequences in vivo and in vitro correlated perfectly. Our data suggest that E. coli-based biosensors of this type should be broadly applicable to TetR-like transcription factors.


2011 ◽  
Vol 193 (22) ◽  
pp. 6358-6365 ◽  
Author(s):  
Marcin Wolański ◽  
Rafał Donczew ◽  
Agnieszka Kois-Ostrowska ◽  
Paweł Masiewicz ◽  
Dagmara Jakimowicz ◽  
...  

AdpA is a key regulator of morphological differentiation inStreptomyces. In contrast toStreptomyces griseus, relatively little is known about AdpA protein functions inStreptomyces coelicolor. Here, we report for the first time the translation accumulation profile of theS. coelicoloradpA(adpASc) gene; the level ofS. coelicolorAdpA (AdpASc) increased, reaching a maximum in the early stage of aerial mycelium formation (after 36 h), and remained relatively stable for the next several hours (48 to 60 h), and then the signal intensity decreased considerably. AdpAScspecifically binds theadpAScpromoter regionin vitroandin vivo, suggesting that its expression is autoregulated; surprisingly, in contrast toS. griseus, the protein presumably acts as a transcriptional activator. We also demonstrate a direct influence of AdpAScon the expression of several genes whose products play key roles in the differentiation ofS. coelicolor: STI, a protease inhibitor; RamR, an atypical response regulator that itself activates expression of the genes for a small modified peptide that is required for aerial growth; and ClpP1, an ATP-dependent protease. The diverse influence of AdpAScprotein on the expression of the analyzed genes presumably results mainly from different affinities of AdpAScprotein to individual promoters.


2021 ◽  
Author(s):  
Jayashree Pohnerkar ◽  
Krishma Tailor ◽  
Prarthi Sagar ◽  
Keyur Dave

The guanosine nucleotide derivatives ppGpp and pppGpp are central to the remarkable capacity of bacteria to adapt to fluctuating environment and metabolic perturbations. These alarmones are synthesized by two proteins, RelA and SpoT in E. coli and the activities of each of the two enzymes are highly regulated for homeostatic control of (p)ppGpp levels in the cell. Although the domain structure and function of RelA are well defined, the findings of this study unfold the regulatory aspect of RelA that is possibly relevant in vivo. We uncover here the importance of the N-terminal 1-119 amino acids of the enzymatically compromised (p)ppGpp hydrolytic domain (HD) of monofunctional RelA for the (p)ppGpp mediated regulation of RelA-CTD function. We find that even moderate level expression of RelA appreciably reduces growth when the basal levels of (p)ppGpp in the cells are higher than in the wild type, an effect independent of its ability to synthesize (p)ppGpp. This is evidenced by the growth inhibitory effects of oversynthesis of the RelA-CTD in the relA+ strain but not in relA null mutant, suggesting the requirement of the functional RelA protein for basal level synthesis of (p)ppGpp, accordingly corroborated by the restoration of the growth inhibitory effects of the RelA-CTD expression in the relA1 spoT202 mutant. The N-terminal 119 amino acids of RelA fused in-frame with the RelA-CTD, both from 406-744 amino acids (including TGS) and from 454-744 amino acids (sans TGS) caused growth inhibition only in spoT1 and spoT202 relA1 mutants, uncovering the hitherto unrealized (p)ppGpp-dependent regulation of RelA-CTD function. An incremental rise in the (p)ppGpp levels is proposed to progressively modulate the interaction of RelA-CTD with the ribosomes, with possible implications in the feedback regulation of the N-terminal (p)ppGpp synthesis function, a proposal that best explains the nonlinear relationship between (p)ppGpp synthesis and increased ratio of RelA:ribosomes, both in vitro as well as in vivo.


2016 ◽  
Author(s):  
Ximena Steinberg ◽  
Jason Galpin ◽  
Gibran Nasir ◽  
Jose Sepulveda-Ugarte ◽  
Romina V. Sepúlveda ◽  
...  

AbstractThe incorporation of non-canonical amino acids into proteins has emerged as a promising strategy to manipulate and study protein structure-function relationships with superior precision in vitro and in vivo. To date, fluorescent non-canonical amino acids (f-ncAA) have been successfully incorporated in proteins expressed in bacterial systems, Xenopus oocytes, and HEK-293T cells. Here, we describe the rational generation of an orthogonal aminoacyltRNA synthetase based on the E. coli tyrosine synthetase that is capable of encoding the f-ncAA tyr-coumarin in HEK-293T cells.


2009 ◽  
Vol 418 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Claudia S. López ◽  
R. Sean Peacock ◽  
Jorge H. Crosa ◽  
Hans J. Vogel

In the fish pathogen Vibrio anguillarum the TonB2 protein is essential for the uptake of the indigenous siderophore anguibactin. Here we describe deletion mutants and alanine replacements affecting the final six amino acids of TonB2. Deletions of more than two amino acids of the TonB2 C-terminus abolished ferric-anguibactin transport, whereas replacement of the last three residues resulted in a protein with wild-type transport properties. We have solved the high-resolution solution structure of the TonB2 C-terminal domain by NMR spectroscopy. The core of this domain (residues 121–206) has an αββαβ structure, whereas residues 76–120 are flexible and extended. This overall folding topology is similar to the Escherichia coli TonB C-terminal domain, albeit with two differences: the β4 strand found at the C-terminus of TonB is absent in TonB2, and loop 3 is extended by 9 Å (0.9 nm) in TonB2. By examining several mutants, we determined that a complete loop 3 is not essential for TonB2 activity. Our results indicate that the β4 strand of E. coli TonB is not required for activity of the TonB system across Gram-negative bacterial species. We have also determined, through NMR chemical-shift-perturbation experiments, that the E. coli TonB binds in vitro to the TonB box from the TonB2-dependent outer membrane transporter FatA; moreover, it can substitute in vivo for TonB2 during ferric-anguibactin transport in V. anguillarum. Unexpectedly, TonB2 did not bind in vitro to the FatA TonB-box region, suggesting that additional factors may be required to promote this interaction. Overall our results indicate that TonB2 is a representative of a different class of TonB proteins.


2010 ◽  
Vol 192 (17) ◽  
pp. 4275-4280 ◽  
Author(s):  
Marcha L. Gatewood ◽  
George H. Jones

ABSTRACT ppGpp regulates gene expression in a variety of bacteria and in plants. We proposed previously that ppGpp or its precursor, pppGpp [referred to collectively as (p)ppGpp], or both might regulate the activity of the enzyme polynucleotide phosphorylase in Streptomyces species. We have examined the effects of (p)ppGpp on the polymerization and phosphorolysis activities of PNPase from Streptomyces coelicolor, Streptomyces antibioticus, and Escherichia coli. We have shown that (p)ppGpp inhibits the activities of both Streptomyces PNPases but not the E. coli enzyme. The inhibition kinetics for polymerization using the Streptomyces enzymes are of the mixed noncompetitive type, suggesting that (p)ppGpp binds to a region other than the active site of the enzyme. ppGpp also inhibited the phosphorolysis of a model RNA substrate derived from the rpsO-pnp operon of S. coelicolor. We have shown further that the chemical stability of mRNA increases during the stationary phase in S. coelicolor and that induction of a plasmid-borne copy of relA in a relA-null mutant increases the chemical stability of bulk mRNA as well. We speculate that the observed inhibition in vitro may reflect a role of ppGpp in the regulation of antibiotic production in vivo.


2006 ◽  
Vol 188 (20) ◽  
pp. 7082-7089 ◽  
Author(s):  
Zahaed Evangelista-Martínez ◽  
Gabriela González-Cerón ◽  
Luis Servín-González

ABSTRACT Expression of the Streptomyces exfoliatus lipA gene, which encodes an extracellular lipase, depends on LipR, a transcriptional activator that belongs to the STAND class of P-loop nucleoside triphosphatases. LipR is closely related to activators present in some antibiotic biosynthesis clusters of actinomycetes, forming the LipR/TchG family of regulators. In this work we showed that purified LipR protein is essential for activation of lipA transcription in vitro and that this transcription depends on the presence of a conserved inverted repeat, the LipR box, located upstream of the lipA promoter. Mutagenesis of the lipA promoter region indicated that most transcription depends on LipR binding to the proximal half-site of the LipR box in close proximity to the −35 region of the promoter. Our experiments also indicated that LipR establishes contact with the RNA polymerase on both sides of the LipR box, since some activation was observed when only the distal half-site was present or when the entire LipR box was moved further upstream. We also showed that the LipR proteins of S. exfoliatus and Streptomyces coelicolor are functionally interchangeable both in vitro and in vivo, revealing the functional conservation of the regulatory elements in these two species.


2018 ◽  
Vol 115 (25) ◽  
pp. 6446-6451 ◽  
Author(s):  
Mingxu Fang ◽  
Carl E. Bauer

When faced with amino acid starvation, prokaryotic cells induce a stringent response that modulates their physiology. The stringent response is manifested by production of signaling molecules guanosine 5′-diphosphate,3′-diphosphate (ppGpp) and guanosine 5′-triphosphate,3′-diphosphate (pppGpp) that are also called alarmones. In many species, alarmone levels are regulated by a multidomain bifunctional alarmone synthetase/hydrolase called Rel. In this enzyme, there is an ACT domain at the carboxyl region that has an unknown function; however, similar ACT domains are present in other enzymes that have roles in controlling amino acid metabolism. In many cases, these other ACT domains have been shown to allosterically regulate enzyme activity through the binding of amino acids. Here, we show that the ACT domain present in theRhodobacter capsulatusRel alarmone synthetase/hydrolase binds branched-chain amino acids valine and isoleucine. We further show that the binding of these amino acids stimulates alarmone hydrolase activity both in vitro and in vivo. Furthermore, we found that the ACT domain present in Rel proteins from many diverse species also binds branched-chain amino acids. These results indicate that the cellular concentration of amino acids can directly affect Rel alarmone synthetase/hydrolase activity, thus adding another layer of control to current models of cellular control of the stringent response.


Sign in / Sign up

Export Citation Format

Share Document