scholarly journals Roles of Aconitase in Growth, Metabolism, and Morphological Differentiation of Streptomyces coelicolor

2001 ◽  
Vol 183 (10) ◽  
pp. 3193-3203 ◽  
Author(s):  
P. H. Viollier ◽  
K. T. Nguyen ◽  
W. Minas ◽  
M. Folcher ◽  
G. E. Dale ◽  
...  

ABSTRACT The studies of aconitase presented here, along with those of citrate synthase (P. H. Viollier, W. Minas, G. E. Dale, M. Folcher, and C. J. Thompson, J. Bacteriol. 183:3184–3192, 2001), were undertaken to investigate the role of the tricarboxylic acid (TCA) cycle in Streptomyces coelicolor development. A single aconitase activity (AcoA) was detected in protein extracts of cultures during column purification. The deduced amino acid sequence of the cloned acoA gene constituted the N-terminal sequence of semipurified AcoA and was homologous to bacterial A-type aconitases and bifunctional eukaryotic aconitases (iron regulatory proteins). The fact that an acoA disruption mutant (BZ4) did not grow on minimal glucose media in the absence of glutamate confirmed that this gene encoded the primary vegetative aconitase catalyzing flux through the TCA cycle. On glucose-based complete medium, BZ4 had defects in growth, antibiotic biosynthesis, and aerial hypha formation, partially due to medium acidification and accumulation of citrate. The inhibitory effects of acids and citrate on BZ4 were partly suppressed by buffer or by introducing a citrate synthase mutation. However, the fact that growth of an acoA citA mutant remained impaired, even on a nonacidogenic carbon source, suggested alternative functions of AcoA. Immunoblots revealed that AcoA was present primarily during substrate mycelial growth on solid medium. Transcription ofacoA was limited to the early growth phase in liquid cultures from a start site mapped in vitro and in vivo.

1998 ◽  
Vol 180 (16) ◽  
pp. 4123-4132 ◽  
Author(s):  
Oscar H. Martínez-Costa ◽  
Miguel A. Fernández-Moreno ◽  
Francisco Malpartida

ABSTRACT Streptomyces coelicolor (p)ppGpp synthetase (Rel protein) belongs to the RelA and SpoT (RelA/SpoT) family, which is involved in (p)ppGpp metabolism and the stringent response. The potential functions of the rel gene have been examined.S. coelicolor Rel has been shown to be ribosome associated, and its activity in vitro is ribosome dependent. Analysis in vivo of the active recombinant protein in well-defined Escherichia coli relA and relA/spoT mutants provides evidence thatS. coelicolor Rel, like native E. coli RelA, is functionally ribosome associated, resulting in ribosome-dependent (p)ppGpp accumulation upon amino acid deprivation. Expression of anS. coelicolor C-terminally deleted Rel, comprised of only the first 489 amino acids, catalyzes a ribosome-independent (p)ppGpp formation, in the same manner as the E. colitruncated RelA protein (1 to 455 amino acids). An E. coli relA spoT double deletion mutant transformed with S. coelicolor rel gene suppresses the phenotype associated with (p)ppGpp deficiency. However, in such a strain, arel-mediated (p)ppGpp response apparently occurs after glucose depletion, but only in the absence of amino acids. Analysis of ppGpp decay in E. coli expressing the S. coelicolor rel gene suggests that it also encodes a (p)ppGpp-degrading activity. By deletion analysis, the catalytic domains of S. coelicolor Rel for (p)ppGpp synthesis and degradation have been located within its N terminus (amino acids 267 to 453 and 93 to 397, respectively). In addition,E. coli relA in an S. coelicolor reldeletion mutant restores actinorhodine production and shows a nearly normal morphological differentiation, as does the wild-typerel gene, which is in agreement with the proposed role of (p)ppGpp nucleotides in antibiotic biosynthesis.


2001 ◽  
Vol 183 (10) ◽  
pp. 3184-3192 ◽  
Author(s):  
Patrick H. Viollier ◽  
Wolfgang Minas ◽  
Glenn E. Dale ◽  
Marc Folcher ◽  
Charles J. Thompson

ABSTRACT Studies of citrate synthase (CitA) were carried out to investigate its role in morphological development and biosynthesis of antibiotics in Streptomyces coelicolor. Purification of CitA, the major vegetative enzyme activity, allowed characterization of its kinetic properties. The apparent K m values of CitA for acetyl coenzyme A (acetyl-CoA) (32 μM) and oxaloacetate (17 μM) were similar to those of citrate synthases from other gram-positive bacteria and eukaryotes. CitA was not strongly inhibited by various allosteric feedback inhibitors (NAD+, NADH, ATP, ADP, isocitrate, or α-ketoglutarate). The corresponding gene (citA) was cloned and sequenced, allowing construction of a citA mutant (BZ2). BZ2 was a glutamate auxotroph, indicating that citA encoded the major citrate synthase allowing flow of acetyl-CoA into the tricarboxylic acid (TCA) cycle. Interruption of aerobic TCA cycle-based metabolism resulted in acidification of the medium and defects in morphological differentiation and antibiotic biosynthesis. These developmental defects of the citA mutant were in part due to a glucose-dependent medium acidification that was also exhibited by some other bald mutants. Unlike other acidogenic bald strains,citA and bldJ mutants were able to produce aerial mycelia and pigments when the medium was buffered sufficiently to maintain neutrality. Extracellular complementation studies suggested that citA defines a new stage of theStreptomyces developmental cascade.


2011 ◽  
Vol 193 (22) ◽  
pp. 6358-6365 ◽  
Author(s):  
Marcin Wolański ◽  
Rafał Donczew ◽  
Agnieszka Kois-Ostrowska ◽  
Paweł Masiewicz ◽  
Dagmara Jakimowicz ◽  
...  

AdpA is a key regulator of morphological differentiation inStreptomyces. In contrast toStreptomyces griseus, relatively little is known about AdpA protein functions inStreptomyces coelicolor. Here, we report for the first time the translation accumulation profile of theS. coelicoloradpA(adpASc) gene; the level ofS. coelicolorAdpA (AdpASc) increased, reaching a maximum in the early stage of aerial mycelium formation (after 36 h), and remained relatively stable for the next several hours (48 to 60 h), and then the signal intensity decreased considerably. AdpAScspecifically binds theadpAScpromoter regionin vitroandin vivo, suggesting that its expression is autoregulated; surprisingly, in contrast toS. griseus, the protein presumably acts as a transcriptional activator. We also demonstrate a direct influence of AdpAScon the expression of several genes whose products play key roles in the differentiation ofS. coelicolor: STI, a protease inhibitor; RamR, an atypical response regulator that itself activates expression of the genes for a small modified peptide that is required for aerial growth; and ClpP1, an ATP-dependent protease. The diverse influence of AdpAScprotein on the expression of the analyzed genes presumably results mainly from different affinities of AdpAScprotein to individual promoters.


2006 ◽  
Vol 188 (20) ◽  
pp. 7082-7089 ◽  
Author(s):  
Zahaed Evangelista-Martínez ◽  
Gabriela González-Cerón ◽  
Luis Servín-González

ABSTRACT Expression of the Streptomyces exfoliatus lipA gene, which encodes an extracellular lipase, depends on LipR, a transcriptional activator that belongs to the STAND class of P-loop nucleoside triphosphatases. LipR is closely related to activators present in some antibiotic biosynthesis clusters of actinomycetes, forming the LipR/TchG family of regulators. In this work we showed that purified LipR protein is essential for activation of lipA transcription in vitro and that this transcription depends on the presence of a conserved inverted repeat, the LipR box, located upstream of the lipA promoter. Mutagenesis of the lipA promoter region indicated that most transcription depends on LipR binding to the proximal half-site of the LipR box in close proximity to the −35 region of the promoter. Our experiments also indicated that LipR establishes contact with the RNA polymerase on both sides of the LipR box, since some activation was observed when only the distal half-site was present or when the entire LipR box was moved further upstream. We also showed that the LipR proteins of S. exfoliatus and Streptomyces coelicolor are functionally interchangeable both in vitro and in vivo, revealing the functional conservation of the regulatory elements in these two species.


1978 ◽  
Vol 77 (1) ◽  
pp. 1-NP ◽  
Author(s):  
M. R. WARNER

Morphological differentiation was enhanced in mammary glands from mice injected with oestradiol as neonates both in vivo, after 9 days of pretreatment with oestrogen and progesterone, and in vitro, either after 6 or 9 days of pretreatment and on all hormone supplements, or after culture with oestradiol, progesterone, aldosterone, insulin and thyroxine with or without prolactin and growth hormone. These hormone combinations further enhanced development, whereas culture with insulin and thyroxine did not. Differentiation in vitro was least on medium containing insulin + thyroxine, and was greatest on the complete medium (insulin, thyroxine, growth hormone, prolactin, aldosterone, progesterone and oestradiol). An intermediate degree of differentiation occurred when growth hormone and prolactin were omitted from the complete medium. Differences in lobule formation between oestrogen-treated and control mice were probably ovary-dependent at the dose used (25 μg/day), since pretreatment with oestradiol and progesterone was necessary to reveal them. Enhanced hormone sensitivity of murine mammary tissues exposed to oestradiol early in life may be related to subsequent enhanced dysplastic potential of the tissue and provides a further basis for caution in the administration of steroids to immature individuals.


2021 ◽  
Vol 22 (21) ◽  
pp. 11867
Author(s):  
Krzysztof J. Pawlik ◽  
Mateusz Zelkowski ◽  
Mateusz Biernacki ◽  
Katarzyna Litwinska ◽  
Pawel Jaworski ◽  
...  

Streptomyces bacteria produce a plethora of secondary metabolites including the majority of medically important antibiotics. The onset of secondary metabolism is correlated with morphological differentiation and controlled by a complex regulatory network involving numerous regulatory proteins. Control over these pathways at the molecular level has a medical and industrial importance. Here we describe a GntR-like DNA binding transcription factor SCO3932, encoded within an actinomycete integrative and conjugative element, which is involved in the secondary metabolite biosynthesis regulation. Affinity chromatography, electrophoresis mobility shift assay, footprinting and chromatin immunoprecipitation experiments revealed, both in vitro and in vivo, SCO3932 binding capability to its own promoter region shared with the neighboring gene SCO3933, as well as promoters of polyketide metabolite genes, such as cpkD, a coelimycin biosynthetic gene, and actII-orf4—an activator of actinorhodin biosynthesis. Increased activity of SCO3932 target promoters, as a result of SCO3932 overproduction, indicates an activatory role of this protein in Streptomyces coelicolor A3(2) metabolite synthesis pathways.


2010 ◽  
Vol 76 (23) ◽  
pp. 7741-7753 ◽  
Author(s):  
Delin Xu ◽  
Nicolas Seghezzi ◽  
Catherine Esnault ◽  
Marie-Joelle Virolle

ABSTRACT The overexpression of a regulatory gene of the TetR family (SCO3201) originating either from Streptomyces lividans or from Streptomyces coelicolor was shown to strongly repress antibiotic production (calcium-dependent antibiotic [CDA], undecylprodigiosin [RED], and actinorhodin [ACT]) of S. coelicolor and of the ppk mutant strain of S. lividans. Curiously, the overexpression of this gene also had a strong inhibitory effect on the sporulation process of S. coelicolor but not on that of S. lividans. SCO3201 was shown to negatively regulate its own transcription, and its DNA binding motif was found to overlap its −35 promoter sequence. The interruption of this gene in S. lividans or S. coelicolor did not lead to any obvious phenotypes, indicating that when overexpressed SCO3201 likely controls the expression of target genes of other TetR regulators involved in the regulation of the metabolic and morphological differentiation process in S. coelicolor. The direct and functional interaction of SCO3201 with the promoter region of scbA, a gene under the positive control of the TetR-like regulator, ScbR, was indeed demonstrated by in vitro as well as in vivo approaches.


Blood ◽  
2021 ◽  
Author(s):  
Alexandra Sipol ◽  
Erik Hameister ◽  
Busheng Xue ◽  
Julia Hofstetter ◽  
Maxim Barenboim ◽  
...  

Cancer cells are in most instances characterized by rapid proliferation and uncontrolled cell division. Hence, they must adapt to proliferation-induced metabolic stress through intrinsic or acquired anti-metabolic stress responses to maintain homeostasis and survival. One mechanism to achieve this is to reprogram gene expression in a metabolism-dependent manner. MondoA (also known as MLXIP), a member of the MYC interactome, has been described as an example of such a metabolic sensor. However, the role of MondoA in malignancy is not fully understood and the underlying mechanism in metabolic responses remains elusive. By assessing patient data sets we found that MondoA overexpression is associated with a worse survival in pediatric common acute lymphoblastic leukemia (B-ALL). Using CRISPR/Cas9 and RNA interference approaches, we observed that MondoA depletion reduces transformational capacity of B-ALL cells in vitro and dramatically inhibits malignant potential in an in vivo mouse model. Interestingly, reduced expression of MondoA in patient data sets correlated with enrichment in metabolic pathways. The loss of MondoA correlated with increased tricarboxylic acid (TCA) cycle activity. Mechanistically, MondoA senses metabolic stress in B-ALL cells by restricting oxidative phosphorylation through reduced PDH activity. Glutamine starvation conditions greatly enhance this effect and highlight the inability to mitigate metabolic stress upon loss of MondoA in B-ALL. Our findings give a novel insight into the function of MondoA in pediatric B-ALL and support the notion that MondoA inhibition in this entity offers a therapeutic opportunity and should be further explored.


2004 ◽  
Vol 186 (20) ◽  
pp. 6983-6998 ◽  
Author(s):  
Aneta A. Bartosik ◽  
Krzysztof Lasocki ◽  
Jolanta Mierzejewska ◽  
Christopher M. Thomas ◽  
Grazyna Jagura-Burdzy

ABSTRACT The par genes of Pseudomonas aeruginosa have been studied to increase the understanding of their mechanism of action and role in the bacterial cell. Key properties of the ParB protein have been identified and are associated with different parts of the protein. The ParB- ParB interaction domain was mapped in vivo and in vitro to the C-terminal 56 amino acids (aa); 7 aa at the C terminus play an important role. The dimerization domain of P. aeruginosa ParB is interchangeable with the dimerization domain of KorB from plasmid RK2 (IncP1 group). The C-terminal part of ParB is also involved in ParB-ParA interactions. Purified ParB binds specifically to DNA containing a putative parS sequence based on the consensus sequence found in the chromosomes of Bacillus subtilis, Pseudomonas putida, and Streptomyces coelicolor. The overproduction of ParB was shown to inhibit the function of genes placed near parS. This “silencing” was dependent on the parS sequence and its orientation. The overproduction of P. aeruginosa ParB or its N-terminal part also causes inhibition of the growth of P. aeruginosa and P. putida but not Escherichia coli cells. Since this inhibitory determinant is located well away from ParB segments required for dimerization or interaction with the ParA counterpart, this result may suggest a role for the N terminus of P. aeruginosa ParB in interactions with host cell components.


2019 ◽  
Vol 41 (5) ◽  
pp. 656-665
Author(s):  
Anastasia Kariagina ◽  
Sophia Y Lunt ◽  
J Justin McCormick

Abstract Metabolic changes accompanying a step-wise malignant transformation was investigated using a syngeneic lineage of human fibroblasts. Cell immortalization was associated with minor alterations in metabolism. Consecutive loss of cell cycle inhibition in immortalized cells resulted in increased levels of oxidative phosphorylation (OXPHOS). Overexpression of the H-Ras oncoprotein produced cells forming sarcomas in athymic mice. These transformed cells exhibited increased glucose consumption, glycolysis and a further increase in OXPHOS. Because of the markedly increased OXPHOS in transformed cells, the impact of a transaminase inhibitor, aminooxyacetic acid (AOA), which decreases glutamine influx to the tricarboxylic acid (TCA) cycle, was tested. Indeed, AOA significantly decreased proliferation of malignantly transformed fibroblasts and fibrosarcoma-derived cells in vitro and in vivo. AOA also decreased proliferation of cells susceptible to malignant transformation. Metabolomic studies in normal and transformed cells indicated that, in addition to the anticipated effect on the TCA cycle, AOA decreased production of nucleotides adenosine triphosphate (ATP) and uridine monophosphate. Exogenous nucleotides partially rescued decreased proliferation of the malignant cells treated with AOA. Our data indicate that AOA blocks several metabolic pathways essential for growth of malignant cells. Therefore, OXPHOS may provide important therapeutic targets for treatment of sarcoma.


Sign in / Sign up

Export Citation Format

Share Document