scholarly journals Escherichia coli Promoters with UP Elements of Different Strengths: Modular Structure of Bacterial Promoters

1998 ◽  
Vol 180 (20) ◽  
pp. 5375-5383 ◽  
Author(s):  
Wilma Ross ◽  
Sarah E. Aiyar ◽  
Julia Salomon ◽  
Richard L. Gourse

ABSTRACT The α subunit of Escherichia coli RNA polymerase (RNAP) participates in promoter recognition through specific interactions with UP element DNA, a region upstream of the recognition hexamers for the ς subunit (the −10 and −35 hexamers). UP elements have been described in only a small number of promoters, including the rRNA promoter rrnB P1, where the sequence has a very large (30- to 70-fold) effect on promoter activity. Here, we analyzed the effects of upstream sequences from several additional E. coli promoters (rrnD P1, rrnB P2, λp R, lac, merT, and RNA II). The relative effects of different upstream sequences were compared in the context of their own core promoters or as hybrids to thelac core promoter. Different upstream sequences had different effects, increasing transcription from 1.5- to ∼90-fold, and several had the properties of UP elements: they increased transcription in vitro in the absence of accessory protein factors, and transcription stimulation required the C-terminal domain of the RNAP α subunit. The effects of the upstream sequences correlated generally with their degree of similarity to an UP element consensus sequence derived previously. Protection of upstream sequences by RNAP in footprinting experiments occurred in all cases and was thus not a reliable indicator of UP element strength. These data support a modular view of bacterial promoters in which activity reflects the composite effects of RNAP interactions with appropriately spaced recognition elements (−10, −35, and UP elements), each of which contributes to activity depending on its similarity to the consensus.

2006 ◽  
Vol 188 (21) ◽  
pp. 7364-7377 ◽  
Author(s):  
Li Shen ◽  
Xiaogeng Feng ◽  
Yuan Yuan ◽  
Xudong Luo ◽  
Thomas P. Hatch ◽  
...  

ABSTRACT The σ transcription factor confers the promoter recognition specificity of RNA polymerase (RNAP) in eubacteria. Chlamydia trachomatis has three known sigma factors, σ66, σ54, and σ28. We developed two methods to facilitate the characterization of promoter sequences recognized by C. trachomatis σ28 (σ28 Ct). One involved the arabinose-induced expression of plasmid-encoded σ28 Ct in a strain of Escherichia coli defective in the σ28 structural gene, fliA. The second was an analysis of transcription in vitro with a hybrid holoenzyme reconstituted with E. coli RNAP core and recombinant σ28 Ct. These approaches were used to investigate the interactions of σ28 Ct with the σ28 Ct-dependent hctB promoter and selected E. coli σ28 (σ28 Ec)-dependent promoters, in parallel, compared with the promoter recognition properties of σ28 EC. Our results indicate that RNAP containing σ28 Ct has at least three characteristics: (i) it is capable of recognizing some but not all σ28 EC-dependent promoters; (ii) it can distinguish different promoter structures, preferentially activating promoters with upstream AT-rich sequences; and (iii) it possesses a greater flexibility than σ28 EC in recognizing variants with different spacing lengths separating the −35 and −10 elements of the core promoter.


2002 ◽  
Vol 184 (14) ◽  
pp. 3808-3814 ◽  
Author(s):  
Melicent C. Peck ◽  
Tamas Gaal ◽  
Robert F. Fisher ◽  
Richard L. Gourse ◽  
Sharon R. Long

ABSTRACT Sinorhizobium meliloti, a gram-negative soil bacterium, forms a nitrogen-fixing symbiotic relationship with members of the legume family. To facilitate our studies of transcription in S. meliloti, we cloned and characterized the gene for the α subunit of RNA polymerase (RNAP). S. meliloti rpoA encodes a 336-amino-acid, 37-kDa protein. Sequence analysis of the region surrounding rpoA identified six open reading frames that are found in the conserved gene order secY (SecY)-adk (Adk)-rpsM (S13)-rpsK (S11)-rpoA (α)-rplQ (L17) found in the α-proteobacteria. In vivo, S. meliloti rpoA expressed in Escherichia coli complemented a temperature sensitive mutation in E. coli rpoA, demonstrating that S. meliloti α supports RNAP assembly, sequence-specific DNA binding, and interaction with transcriptional activators in the context of E. coli. In vitro, we reconstituted RNAP holoenzyme from S. meliloti α and E. coli β, β′, and σ subunits. Similar to E. coli RNAP, the hybrid RNAP supported transcription from an E. coli core promoter and responded to both upstream (UP) element- and Fis-dependent transcription activation. We obtained similar results using purified RNAP from S. meliloti. Our results demonstrate that S. meliloti α functions are conserved in heterologous host E. coli even though the two α subunits are only 51% identical. The ability to utilize E. coli as a heterologous system in which to study the regulation of S. meliloti genes could provide an important tool for our understanding and manipulation of these processes.


1998 ◽  
Vol 180 (6) ◽  
pp. 1567-1569 ◽  
Author(s):  
Pierre Steffen ◽  
Agnes Ullmann

ABSTRACT We constructed hybrid Bordetella pertussis-Escherichia coli RNA polymerases and compared productive interactions between transcription activators and cognate RNA polymerase subunits in an in vitro transcription system. Virulence-associated genes of B. pertussis, in the presence of their activator BvgA, are transcribed by all variants of hybrid RNA polymerases, whereas transcription at the E. coli lacpromoter regulated by the cyclic AMP-catabolite gene activator protein has an absolute requirement for the E. coli α subunit. This suggests that activator contact sites involve a high degree of selectivity.


1998 ◽  
Vol 180 (9) ◽  
pp. 2359-2366 ◽  
Author(s):  
Ming Tan ◽  
Tamas Gaal ◽  
Richard L. Gourse ◽  
Joanne N. Engel

ABSTRACT We have characterized the Chlamydia trachomatisribosomal promoter, rRNA P1, by measuring the effect of substitutions and deletions on in vitro transcription with partially purifiedC. trachomatis RNA polymerase. Our analyses indicate that rRNA P1 contains potential −10 and −35 elements, analogous toEscherichia coli promoters recognized by E-ς70. We identified a novel AT-rich region immediately downstream of the −35 region. The effect of this region was specific for C. trachomatis RNA polymerase and strongly attenuated by single G or C substitutions. Upstream of the −35 region was an AT-rich sequence that enhanced transcription by C. trachomatis and E. coli RNA polymerases. We propose that this region functions as an UP element.


2002 ◽  
Vol 184 (5) ◽  
pp. 1349-1358 ◽  
Author(s):  
Sarah E. Aiyar ◽  
Tamas Gaal ◽  
Richard L. Gourse

ABSTRACT The bacterium Vibrio natriegens can double with a generation time of less than 10 min (R. G. Eagon, J. Bacteriol. 83:736-737, 1962), a growth rate that requires an extremely high rate of protein synthesis. We show here that V. natriegens' high potential for protein synthesis results from an increase in ribosome numbers with increasing growth rate, as has been found for other bacteria. We show that V. natriegens contains a large number of rRNA operons, and its rRNA promoters are extremely strong. The V. natriegens rRNA core promoters are at least as active in vitro as Escherichia coli rRNA core promoters with either E. coli RNA polymerase (RNAP) or V. natriegens RNAP, and they are activated by UP elements, as in E. coli. In addition, the E. coli transcription factor Fis activated V. natriegens rrn P1 promoters in vitro. We conclude that the high capacity for ribosome synthesis in V. natriegens results from a high capacity for rRNA transcription, and the high capacity for rRNA transcription results, at least in part, from the same factors that contribute most to high rates of rRNA transcription in E. coli, i.e., high gene dose and strong activation by UP elements and Fis.


2000 ◽  
Vol 182 (21) ◽  
pp. 6027-6035 ◽  
Author(s):  
Irina Artsimovitch ◽  
Vladimir Svetlov ◽  
Larry Anthony ◽  
Richard R. Burgess ◽  
Robert Landick

ABSTRACT Adaptation of bacterial cells to diverse habitats relies on the ability of RNA polymerase to respond to various regulatory signals. Some of these signals are conserved throughout evolution, whereas others are species specific. In this study we present a comprehensive comparative analysis of RNA polymerases from two distantly related bacterial species, Escherichia coli and Bacillus subtilis, using a panel of in vitro transcription assays. We found substantial species-specific differences in the ability of these enzymes to escape from the promoter and to recognize certain types of elongation signals. Both enzymes responded similarly to other pause and termination signals and to the general E. coli elongation factors NusA and GreA. We also demonstrate that, although promoter recognition depends largely on the ς subunit, promoter discrimination exhibited in species-specific fashion by both RNA polymerases resides in the core enzyme. We hypothesize that differences in signal recognition are due to the changes in contacts made between the β and β′ subunits and the downstream DNA duplex.


Microbiology ◽  
2009 ◽  
Vol 155 (9) ◽  
pp. 2838-2844 ◽  
Author(s):  
Nicoletta Castiglione ◽  
Serena Rinaldo ◽  
Giorgio Giardina ◽  
Francesca Cutruzzolà

Pseudomonas aeruginosa is a well-known pathogen in chronic respiratory diseases such as cystic fibrosis. Infectivity of P. aeruginosa is related to the ability to grow under oxygen-limited conditions using the anaerobic metabolism of denitrification, in which nitrate is reduced to dinitrogen via nitric oxide (NO). Denitrification is activated by a cascade of redox-sensitive transcription factors, among which is the DNR regulator, sensitive to nitrogen oxides. To gain further insight into the mechanism of NO-sensing by DNR, we have developed an Escherichia coli-based reporter system to investigate different aspects of DNR activity. In E. coli DNR responds to NO, as shown by its ability to transactivate the P. aeruginosa norCB promoter. The direct binding of DNR to the target DNA is required, since mutations in the helix–turn–helix domain of DNR and specific nucleotide substitutions in the consensus sequence of the norCB promoter abolish the transcriptional activity. Using an E. coli strain deficient in haem biosynthesis, we have also confirmed that haem is required in vivo for the NO-dependent DNR activity, in agreement with the property of DNR to bind haem in vitro. Finally, we have shown, we believe for the first time, that DNR is able to discriminate in vivo between different diatomic signal molecules, NO and CO, both ligands of the reduced haem iron in vitro, suggesting that DNR responds specifically to NO.


2000 ◽  
Vol 182 (4) ◽  
pp. 1181-1184 ◽  
Author(s):  
Hiroto Maeda ◽  
Miki Jishage ◽  
Tasuku Nomura ◽  
Nobuyuki Fujita ◽  
Akira Ishihama

ABSTRACT The promoter selectivity of two extracytoplasmic function (ECF) subfamily ς subunits, ςE (ς24) and ςFecI (ς18), of Escherichia coli RNA polymerase was analyzed by using an in vitro transcription system and various promoters. The EςEholoenzyme recognized only the known cognate promoters,rpoEP2, rpoHP3, and degP, and the EςFecI recognized only one known cognate promoter,fecA. The strict promoter recognition properties of ςE and ςFecI are similar to those of other minor ς subunits. Transcription by EςE and EςFecI was enhanced by high concentrations of glutamate, as in the case of other minor ς subunits. The optimum temperature for transcription by EςFecI was low, around 25°C, apparently in agreement with the high rate of iron sequestration byE. coli at low temperatures. By quantitative Western blot analysis, the intracellular levels of ςE and ςFecI in the uninduced steady-state culture of E. coli W3110 (type A) were determined to be 0.7 to 2.0 and 0.1 to 0.2 fmol per μg of total proteins (or 3 to 9 and 0.4 to 0.9 molecules per cell), respectively, and less than 1% of the level of the major ς70 subunit.


1989 ◽  
Vol 264 (2) ◽  
pp. 533-538 ◽  
Author(s):  
E A Cook ◽  
J P Huggins ◽  
G Sathe ◽  
P J England ◽  
J R Piggott

A synthetic phospholamban gene has been cloned and expressed in Escherichia coli, producing both native phospholamban and a fusion protein with 81 amino acids of the influenza virus NS1 protein. Both the native phospholamban and fusion proteins produced extensive cell lysis upon induction of gene expression, but only the native protein underwent spontaneous pentamer formation in E. coli. Translation in vitro of mRNA produced by transcription in vitro of phospholamban cDNA was used to demonstrate the spontaneous aggregation of phospholamban to form pentamers in this system also, both in the presence and absence of exogenous microsomes from canine pancreas or heart. Phospholamban produced by translation in vitro was apparently susceptible to proteolysis by enzymes present in the particulate fractions in these experiments.


2006 ◽  
Vol 188 (24) ◽  
pp. 8352-8359 ◽  
Author(s):  
India Hook-Barnard ◽  
Xanthia B. Johnson ◽  
Deborah M. Hinton

ABSTRACT Escherichia coli σ70-dependent promoters have typically been characterized as either −10/−35 promoters, which have good matches to both the canonical −10 and the −35 sequences or as extended −10 promoters (TGn/−10 promoters), which have the TGn motif and an excellent match to the −10 consensus sequence. We report here an investigation of a promoter, Pminor, that has a nearly perfect match to the −35 sequence and has the TGn motif. However, Pminor contains an extremely poor σ70 −10 element. We demonstrate that Pminor is active both in vivo and in vitro and that mutations in either the −35 or the TGn motif eliminate its activity. Mutation of the TGn motif can be compensated for by mutations that make the −10 element more canonical, thus converting the −35/TGn promoter to a −35/−10 promoter. Potassium permanganate footprinting on the nontemplate and template strands indicates that when polymerase is in a stable (open) complex with Pminor, the DNA is single stranded from positions −11 to +4. We also demonstrate that transcription from Pminor incorporates nontemplated ribonucleoside triphosphates at the 5′ end of the Pminor transcript, which results in an anomalous assignment for the start site when primer extension analysis is used. Pminor represents one of the few −35/TGn promoters that have been characterized and serves as a model for investigating functional differences between these promoters and the better-characterized −10/−35 and extended −10 promoters used by E. coli RNA polymerase.


Sign in / Sign up

Export Citation Format

Share Document