scholarly journals Energy Conservation by the H2:Heterodisulfide Oxidoreductase from Methanosarcina mazei Gö1: Identification of Two Proton-Translocating Segments

1999 ◽  
Vol 181 (13) ◽  
pp. 4076-4080 ◽  
Author(s):  
Tina Ide ◽  
Sebastian Bäumer ◽  
Uwe Deppenmeier

ABSTRACT The membrane-bound H2:heterodisulfide oxidoreductase system of the methanogenic archaeon Methanosarcina mazeiGö1 catalyzed the H2-dependent reduction of 2-hydroxyphenazine and the dihydro-2-hydroxyphenazine-dependent reduction of the heterodisulfide of HS-CoM and HS-CoB (CoM-S-S-CoB). Washed inverted vesicles of this organism were found to couple both processes with the transfer of protons across the cytoplasmic membrane. The maximal H+/2e− ratio was 0.9 for each reaction. The electrochemical proton gradient (ΔμH+ ) thereby generated was shown to drive ATP synthesis from ADP plus Pi, exhibiting stoichiometries of 0.25 ATP synthesized per two electrons transported for both partial reactions. ATP synthesis and the generation of ΔμH+ were abolished by the uncoupler 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF 6847). The ATP synthase inhibitorN,N′-dicyclohexylcarbodiimide did not affect H+ translocation but led to an almost complete inhibition of ATP synthesis and decreased the electron transport rates. The latter effect was relieved by the addition of SF 6847. Thus, the energy-conserving systems showed a stringent coupling which resembles the phenomenon of respiratory control. The results indicate that two different proton-translocating segments are present in the H2:heterodisulfide oxidoreductase system; the first involves the 2-hydroxyphenazine-dependent hydrogenase, and the second involves the heterodisulfide reductase.

2019 ◽  
Vol 64 (2) ◽  
Author(s):  
Jickky Palmae Sarathy ◽  
Priya Ragunathan ◽  
Christopher B. Cooper ◽  
Anna M. Upton ◽  
Gerhard Grüber ◽  
...  

ABSTRACT The diarylquinoline F1FO-ATP synthase inhibitor bedaquiline (BDQ) displays protonophore activity. Thus, uncoupling electron transport from ATP synthesis appears to be a second mechanism of action of this antimycobacterial drug. Here, we show that the new BDQ analogue TBAJ-876 did not retain the parental drug’s protonophore activity. Comparative time-kill analyses revealed that both compounds exert the same bactericidal activity. These results suggest that the uncoupler activity is not required for the bactericidal activity of diarylquinolines.


2009 ◽  
Vol 192 (3) ◽  
pp. 674-678 ◽  
Author(s):  
Cornelia Welte ◽  
Verena Kallnik ◽  
Marcel Grapp ◽  
Gunes Bender ◽  
Steve Ragsdale ◽  
...  

ABSTRACT Reduced ferredoxin is an intermediate in the methylotrophic and aceticlastic pathway of methanogenesis and donates electrons to membrane-integral proteins, which transfer electrons to the heterodisulfide reductase. A ferredoxin interaction has been observed previously for the Ech hydrogenase. Here we present a detailed analysis of a Methanosarcina mazei Δech mutant which shows decreased ferredoxin-dependent membrane-bound electron transport activity, a lower growth rate, and faster substrate consumption. Evidence is presented that a second protein whose identity is unknown oxidizes reduced ferredoxin, indicating an involvement in methanogenesis from methylated C1 compounds.


2006 ◽  
Vol 188 (14) ◽  
pp. 5045-5054 ◽  
Author(s):  
Scott A. Ferguson ◽  
Stefanie Keis ◽  
Gregory M. Cook

ABSTRACT Clostridium paradoxum is an anaerobic thermoalkaliphilic bacterium that grows rapidly at pH 9.8 and 56°C. Under these conditions, growth is sensitive to the F-type ATP synthase inhibitor N,N′-dicyclohexylcarbodiimide (DCCD), suggesting an important role for this enzyme in the physiology of C. paradoxum. The ATP synthase was characterized at the biochemical and molecular levels. The purified enzyme (30-fold purification) displayed the typical subunit pattern for an F1Fo-ATP synthase but also included the presence of a stable oligomeric c-ring that could be dissociated by trichloroacetic acid treatment into its monomeric c subunits. The purified ATPase was stimulated by sodium ions, and sodium provided protection against inhibition by DCCD that was pH dependent. ATP synthesis in inverted membrane vesicles was driven by an artificially imposed chemical gradient of sodium ions in the presence of a transmembrane electrical potential that was sensitive to monensin. Cloning and sequencing of the atp operon revealed the presence of a sodium-binding motif in the membrane-bound c subunit (viz., Q28, E61, and S62). On the basis of these properties, the F1Fo-ATP synthase of C. paradoxum is a sodium-translocating ATPase that is used to generate an electrochemical gradient of Na+ that could be used to drive other membrane-bound bioenergetic processes (e.g., solute transport or flagellar rotation). In support of this proposal are the low rates of ATP synthesis catalyzed by the enzyme and the lack of the C-terminal region of the ε subunit that has been shown to be essential for coupled ATP synthesis.


Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 261 ◽  
Author(s):  
Jickky Palmae Sarathy ◽  
Gerhard Gruber ◽  
Thomas Dick

Bedaquiline (BDQ) inhibits ATP generation in Mycobacterium tuberculosis by interfering with the F-ATP synthase activity. Two mechanisms of action of BDQ are broadly accepted. A direct mechanism involves BDQ binding to the enzyme’s c-ring to block its rotation, thus inhibiting ATP synthesis in the enzyme’s catalytic α3β3-headpiece. An indirect mechanism involves BDQ uncoupling electron transport in the electron transport chain from ATP synthesis at the F-ATP synthase. In a recently uncovered second direct mechanism, BDQ binds to the enzyme’s ε-subunit to disrupt its ability to link c-ring rotation to ATP synthesis at the α3β3-headpiece. However, this mechanism is controversial as the drug’s binding affinity for the isolated ε-subunit protein is moderate and spontaneous resistance mutants in the ε-subunit cannot be isolated. Recently, the new, structurally distinct BDQ analogue TBAJ-876 was utilized as a chemical probe to revisit BDQ’s mechanisms of action. In this review, we first summarize discoveries on BDQ’s mechanisms of action and then describe the new insights derived from the studies of TBAJ-876. The TBAJ-876 investigations confirm the c-ring as a target, while also supporting a functional role for targeting the ε-subunit. Surprisingly, the new findings suggest that the uncoupler mechanism does not play a key role in BDQ’s anti-mycobacterial activity.


Author(s):  
Arnold M. Seligman

The membrane-bound enzymes of the succinic oxidase chain of electron transport on the cristae of mitochondria have been the target of ultrastructural cytochemical research for a number of years. Methods for succinic dehydrogenase have been improved by the continuous design and synthesis of better tetrazolium salts. The most recent is BSPT, which is not osmiophilic, but yields an osmiophilic, lipophobic, insoluble formazan. The terminal triplet of the chain of electron transport or cytochrome oxidase, consisting of cytochrome c, a and a3 has been demonstrated very well via cytochrome c with diaminobenzidine (DAB). The localization of these two reaction products specifically on the outer surface of the inner mitochondrial membrane, lends some support to speculation concerning the mechanism of transfer of oxidative energy for ATP synthesis.


1982 ◽  
Vol 2 (10) ◽  
pp. 743-749 ◽  
Author(s):  
G. Duncan Hitchens ◽  
Douglas B. Kell

The principle of the dual inhibitor titration method for testing models of electron-transport phosphorylation is outlined, and the method is applied to the study of photophosphorylation in bacterial chromatophores. It is concluded that energy coupling is strictly localized in nature in this system, in the sense that free energy released by a particular electron-transport chain may be used only by a particular H+-ATP synthase. Dual inhibitor titrations using the uncoupler SF 6847 and the H+-ATP synthase inhibitor oligomycin indicate that uncouplers act by shuttling rapidly between the localized energy-coupling sites.


1980 ◽  
Vol 188 (2) ◽  
pp. 345-350 ◽  
Author(s):  
R W Jones

H2-dependent reduction of fumarate and nitrate by spheroplasts from Escherichia coli is coupled to the translocation of protons across the cytoplasmic membrane. The leads to H+/2e- stoicheiometry (g-ions of H+ translocated divided by mol of H2 added) is approx. 2 with fumarate and approx. 4 with nitrate as electron acceptor. This proton translocation is dependent on H2 and a terminal electron acceptor and is not observed in the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone and the respiratory inhibitor 2-n-heptyl-4-hydroxyquinoline N-oxide. H2-dependent reduction of menadione and ubiquinone-1 is coupled to a protonophore-sensitive, but 2-n-heptyl-4-hydroxy-quinoline N-oxide-insensitive, proton translocation with leads to H+/2e- stoicheiometry of approx. 2. H2-dependent reduction of Benzyl Viologen (BV++) to its radical (BV+) liberates protons at the periplasmic aspect of the cytoplasmic membrane according to the reaction: H2 + 2BV++ leads to 2H+ + 2BV+. It is concluded that the effective proton translocation observed in the H2-oxidizing segment of the anaerobic respiratory chain of Escherichia coli arises as a direct and inevitable consequence of transmembranous electron transfer between protolytic reactions that are spatially separated by a membrane of low proton-permeability.


2019 ◽  
Vol 10 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Prashant Neupane ◽  
Sudina Bhuju ◽  
Nita Thapa ◽  
Hitesh Kumar Bhattarai

AbstractOxidative phosphorylation is carried out by five complexes, which are the sites for electron transport and ATP synthesis. Among those, Complex V (also known as the F1F0 ATP Synthase or ATPase) is responsible for the generation of ATP through phosphorylation of ADP by using electrochemical energy generated by proton gradient across the inner membrane of mitochondria. A multi subunit structure that works like a pump functions along the proton gradient across the membranes which not only results in ATP synthesis and breakdown, but also facilitates electron transport. Since ATP is the major energy currency in all living cells, its synthesis and function have widely been studied over the last few decades uncovering several aspects of ATP synthase. This review intends to summarize the structure, function and inhibition of the ATP synthase.


2013 ◽  
Vol 41 (5) ◽  
pp. 1288-1293 ◽  
Author(s):  
Gabriele Deckers-Hebestreit

The ATP synthase (FoF1) of Escherichia coli couples the translocation of protons across the cytoplasmic membrane by Fo to ATP synthesis or hydrolysis in F1. Whereas good knowledge of the nanostructure and the rotary mechanism of the ATP synthase is at hand, the assembly pathway of the 22 polypeptide chains present in a stoichiometry of ab2c10α3β3γδϵ has so far not received sufficient attention. In our studies, mutants that synthesize different sets of FoF1 subunits allowed the characterization of individually formed stable subcomplexes. Furthermore, the development of a time-delayed in vivo assembly system enabled the subsequent synthesis of particular missing subunits to allow the formation of functional ATP synthase complexes. These observations form the basis for a model that describes the assembly pathway of the E. coli ATP synthase from pre-formed subcomplexes, thereby avoiding membrane proton permeability by a concomitant assembly of the open H+-translocating unit within a coupled FoF1 complex.


Sign in / Sign up

Export Citation Format

Share Document