scholarly journals Glycine Betaine Transport in the Obligate Halophilic Archaeon Methanohalophilus portucalensis

2000 ◽  
Vol 182 (17) ◽  
pp. 5020-5024 ◽  
Author(s):  
Mei-Chin Lai ◽  
Tong-Yung Hong ◽  
Robert P. Gunsalus

ABSTRACT Transport of the osmoprotectant glycine betaine was investigated using the glycine betaine-synthesizing microbe Methanohalophilus portucalensis (strain FDF1), since solute uptake for this class of obligate halophilic methanogenic Archaea has not been examined. Betaine uptake followed a Michaelis-Menten relationship, with an observed Kt of 23 μM and aV max of 8 nmol per min per mg of protein. The transport system was highly specific for betaine: choline, proline, and dimethylglycine did not significantly compete for [14C]betaine uptake. The proton-conducting uncoupler 2,4-dinitrophenol and the ATPase inhibitorN,N-dicyclohexylcarbodiimide both inhibited glycine betaine uptake. Growth of cells in the presence of 500 μM betaine resulted in faster cell growth due to the suppression of the de novo synthesis of the other compatible solutes, α-glutamate, β-glutamine, and N ɛ-acetyl-β-lysine. These investigations demonstrate that this model halophilic methanogen,M. portucalensis strain FDF1, possesses a high-affinity and highly specific betaine transport system that allows it to accumulate this osmoprotectant from the environment in lieu of synthesizing this or other osmoprotectants under high-salt growth conditions.

1999 ◽  
Vol 65 (2) ◽  
pp. 828-833 ◽  
Author(s):  
Mei-Chin Lai ◽  
Daw-Renn Yang ◽  
Ming-Jen Chuang

ABSTRACT The halophilic methanoarchaeon Methanohalophilus portucalensis can synthesize de novo and accumulate β-glutamine, N ɛ-acetyl-β-lysine, and glycine betaine (betaine) as compatible solutes (osmolytes) when grown at elevated salt concentrations. Both in vivo and in vitro betaine formation assays in this study confirmed previous nuclear magnetic resonance 13C-labelling studies showing that the de novo synthesis of betaine proceeded from glycine, sarcosine, and dimethylglycine to form betaine through threefold methylation. Exogenous sarcosine (1 mM) effectively suppressed the intracellular accumulation of betaine, and a higher level of sarcosine accumulation was accompanied by a lower level of betaine synthesis. Exogenous dimethylglycine has an effect similar to that of betaine addition, which increased the intracellular pool of betaine and suppressed the levels of N ɛ-acetyl-β-lysine and β-glutamine. Both in vivo and in vitro betaine formation assays with glycine as the substrate showed only sarcosine and betaine, but no dimethylglycine. Dimethylglycine was detected only when it was added as a substrate in in vitro assays. A high level of potassium (400 mM and above) was necessary for betaine formation in vitro. Interestingly, no methylamines were detected without the addition of KCl. Also, high levels of NaCl and LiCl (800 mM) favored sarcosine accumulation, while a lower level (400 mM) favored betaine synthesis. The above observations indicate that a high sarcosine level suppressed multiple methylation while dimethylglycine was rapidly converted to betaine. Also, high levels of potassium led to greater amounts of betaine, while lower levels of potassium led to greater amounts of sarcosine. This finding suggests that the intracellular levels of both sarcosine and potassium are associated with the regulation of betaine synthesis inM. portucalensis.


2002 ◽  
Vol 68 (11) ◽  
pp. 5647-5655 ◽  
Author(s):  
Mary Lou Mendum ◽  
Linda Tombras Smith

ABSTRACT The food-borne pathogen Listeria monocytogenes grows actively under high-salt conditions by accumulating compatible solutes such as glycine betaine and carnitine from the medium. We report here that the dominant transport system for glycine betaine uptake, the Gbu porter, may act as a secondary uptake system for carnitine, with a Km of 4 mM for carnitine uptake and measurable uptake at carnitine concentrations as low as 10 μM. This porter has a Km for glycine betaine uptake of about 6 μM. The dedicated carnitine porter, OpuC, has a Km for carnitine uptake of 1 to 3 μM and a V max of approximately 15 nmol/min/mg of protein. Mutants lacking either opuC or gbu were used to study the effects of four carnitine analogs on growth and uptake of osmolytes. In strain DP-L1044, which had OpuC and the two glycine betaine porters Gbu and BetL, triethylglycine was most effective in inhibiting growth in the presence of glycine betaine, but trigonelline was best at inhibiting growth in the presence of carnitine. Carnitine uptake through OpuC was inhibited by γ-butyrobetaine. Dimethylglycine inhibited both glycine betaine and carnitine uptake through the Gbu porter. Carnitine uptake through the Gbu porter was inhibited by triethylglycine. Glycine betaine uptake through the BetL porter was strongly inhibited by trigonelline and triethylglycine. These results suggest that it is possible to reduce the growth of L. monocytogenes under osmotically stressful conditions by inhibiting glycine betaine and carnitine uptake but that to do so, multiple uptake systems must be affected.


2002 ◽  
Vol 65 (6) ◽  
pp. 1008-1015 ◽  
Author(s):  
ODDUR VILHELMSSON ◽  
KAREN J. MILLER

The effects of different humectants (sodium chloride, sucrose, and glycerol) on the growth of and compatible solute (glycine betaine, proline, and carnitine) uptake by the osmotolerant foodborne pathogen Staphylococcus aureus were investigated. While growth in the presence of the impermeant humectants sodium chloride and sucrose induced the accumulation of proline and glycine betaine by cells, growth in the presence of the permeant humectant glycerol did not. When compatible solutes were omitted from low-water-activity media, growth was very poor in the presence of impermeant humectants. In contrast, the addition of compatible solutes had essentially no effect on growth when cells were grown in low-water-activity media containing glycerol as the humectant. Carnitine was found to accumulate to high intracellular levels in osmotically stressed cells when proline and glycine betaine were absent, making it a potentially important compatible solute for this organism.


1981 ◽  
Vol 36 (11-12) ◽  
pp. 942-950 ◽  
Author(s):  
Peter Westhoff ◽  
Kurt Zimmermann ◽  
Frank Boege ◽  
Klaus Zetsche

Abstract Transfer of heterotrophically grown cells of the unicellular green alga Chlorogonium elongatum to autotrophic growth conditions causes a 10 -15 fold increase in the amount of the chloroplastic enzyme ribulose-1,5-bisphosphate carboxylase. This increase was found to be due to de novo synthesis. The relative proportions of large and small subunits of the enzyme do not change. Their ratio is close to 3.4, the proportions in weight of the two subunits in the holoenzyme. Continous labelling with [35S]sulfate reveals that the ratios of incorporation into large and small subunits are essentially the same in autotrophic and heterotrophic cells. Pulse-chase experiments show that the subunits are degraded synchronously. The coordinated subunit synthesis cannot be uncoupled using inhibitors of protein and RNA synthesis or high temperature of cultivation of the alga. The results suggests a very tightly coordinated synthesis of the large and small subunits of ribulosebisphosphate carboxylase.


2000 ◽  
Vol 182 (1) ◽  
pp. 203-206 ◽  
Author(s):  
Tiemen van der Heide ◽  
Bert Poolman

ABSTRACT Microorganisms react upon hyperosmotic stress by accumulating compatible solutes. Here we report that Lactococcus lactisuses a transport system for glycine betaine that, contrary to earlier observations (D. Molenaar et al., J. Bacteriol. 175:5438–5444, 1993), is osmotically regulated at the levels of both expression and transport activity.


2011 ◽  
Vol 2 (5) ◽  
pp. 407-419 ◽  
Author(s):  
Sergey Shabala ◽  
Lana Shabala

AbstractPlants and bacteria respond to hyperosmotic stress by an increase in intracellular osmolality, adjusting their cell turgor to altered growth conditions. This can be achieved either by increased uptake orde novosynthesis of a variety of organic osmolytes (so-called ‘compatible solutes’), or by controlling fluxes of ions across cellular membranes. The relative contributions of each of these mechanisms have been debated in literature for many years and remain unresolved. This paper summarises all the arguments and reopens a discussion on the efficiency and strategies of osmotic adjustment in plants and bacteria. We show that the bulk of osmotic adjustment in both plants and bacteria is achieved by increased accumulation of inorganic osmolytes such as K+, Na+and Cl-. This is applicable to both halophyte and glycophyte species. At the same time,de novosynthesis of compatible solutes is an energetically expensive and slow option and can be used only for the fine adjustment of the cell osmotic potential. The most likely role the organic osmolytes play in osmotic adjustment is in osmoprotection of key membrane transport proteins and reactive oxygen species (ROS) scavenging. The specific mechanisms by which compatible solutes regulate activity of ion transporters remain elusive and require more thorough investigation. It is concluded that creating transgenic species with increased levels of organic osmolytes by itself is counterproductive due to high yield penalties; all these attempts should be complemented by a concurrent increase in the accumulation of inorganic ions directly used for osmotic adjustment.


1953 ◽  
Vol s3-94 (26) ◽  
pp. 185-192
Author(s):  
B. R. SESHACHAR ◽  
C.M. S. DASS

The reorganization of the macronucleus from the vegetative micronucleus is described in Epistylis articulata (Ciliophora, Peritricha). Individuals which have accidentally been deprived of a macronucleus during binary fission develop a new one from the micronucleus. In such amacronucleate animals, the micronucleus divides into two, one of them growing into a macronucleus, the other remaining as the micronucleus. The phenomenon throws new light on the relative importance of the two parts of the ciliate nuclear apparatus and brings into greater emphasis the undifferentiated nature of the micronucleus. It also establishes the possibility of de novo synthesis of DNA in the developing macronuclear rudiment.


2000 ◽  
Vol 66 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Lina M. Botero ◽  
Thamir S. Al-Niemi ◽  
Timothy R. McDermott

ABSTRACT Rhizobium tropici forms nitrogen-fixing nodules on the roots of the common bean (Phaseolus vulgaris). Like other legume-Rhizobium symbioses, the bean-R. tropiciassociation is sensitive to the availability of phosphate (Pi). To better understand phosphorus movement between the bacteroid and the host plant, Pi transport was characterized in R. tropici. We observed two Pitransport systems, a high-affinity system and a low-affinity system. To facilitate the study of these transport systems, a Tn5B22 transposon mutant lacking expression of the high-affinity transport system was isolated and used to characterize the low-affinity transport system in the absence of the high-affinity system. TheKm and V max values for the low-affinity system were estimated to be 34 ± 3 μM Pi and 118 ± 8 nmol of Pi · min−1 · mg (dry weight) of cells−1, respectively, and the Km andV max values for the high-affinity system were 0.45 ± 0.01 μM Pi and 86 ± 5 nmol of Pi · min−1 · mg (dry weight) of cells−1, respectively. Both systems were inducible by Pi starvation and were also shock sensitive, which indicated that there was a periplasmic binding-protein component. Neither transport system appeared to be sensitive to the proton motive force dissipator carbonyl cyanide m-chlorophenylhydrazone, but Pi transport through both systems was eliminated by the ATPase inhibitor N,N′-dicyclohexylcarbodiimide; the Pi transport rate was correlated with the intracellular ATP concentration. Also, Pi movement through both systems appeared to be unidirectional, as no efflux or exchange was observed with either the wild-type strain or the mutant. These properties suggest that both Pi transport systems are ABC type systems. Analysis of the transposon insertion site revealed that the interrupted gene exhibited a high level of homology withkdpE, which in several bacteria encodes a cytoplasmic response regulator that governs responses to low potassium contents and/or changes in medium osmolarity.


2004 ◽  
Vol 186 (6) ◽  
pp. 1683-1693 ◽  
Author(s):  
Gudrun Holtmann ◽  
Erhard Bremer

ABSTRACT Bacillus subtilis possesses five osmotically regulated transporters (Opu) for the uptake of various compatible solutes for osmoprotective purposes. We have now found that compatible solutes also function as thermoprotectants for B. subtilis. Low concentrations of glycine betaine enhanced the growth of the B. subtilis wild-type strain JH642 at its maximal growth temperature (52°C) but did not allow an extension of the upper growth limit. A similar enhancement in the growth of B. subtilis was also observed by the addition of several other compatible solutes that are structurally related to glycine betaine or by the addition of proline. Each of these compatible solutes was taken up under heat stress by the cell through the same Opu transporters that are used for their acquisition under osmostress conditions. Northern blot analysis revealed a moderate increase in transcription of the structural genes for each of the Opu transport systems in cells that were propagated at 52°C. In contrast, the uptake level of radiolabeled glycine betaine was very low under high-temperature growth conditions but nevertheless allowed the buildup of an intracellular glycine betaine pool comparable to that found in cells grown at 37°C in the absence of salt stress. Although exogenously added glutamate has only a limited osmoprotective potential for B. subtilis, it was found to be a very effective thermoprotectant. Collectively, our data demonstrate thermoprotection by a variety of compatible solutes in B. subtilis, thus ascribing a new physiological function for this class of compounds in this microorganism and broadening the physiological role of the known osmoprotectant uptake systems (Opu).


Sign in / Sign up

Export Citation Format

Share Document