scholarly journals Identification of Escherichia coli ubiB, a Gene Required for the First Monooxygenase Step in Ubiquinone Biosynthesis

2000 ◽  
Vol 182 (18) ◽  
pp. 5139-5146 ◽  
Author(s):  
Wayne W. Poon ◽  
Diana E. Davis ◽  
Huan T. Ha ◽  
Tanya Jonassen ◽  
Philip N. Rather ◽  
...  

ABSTRACT It was recently discovered that the aarF gene inProvidencia stuartii is required for coenzyme Q (CoQ) biosynthesis. Here we report that yigR, theEscherichia coli homologue of aarF, isubiB, a gene required for the first monooxygenase step in CoQ biosynthesis. Both the P. stuartii aarF and E. coli ubiB (yigR) disruption mutant strains lack CoQ and accumulate octaprenylphenol. Octaprenylphenol is the CoQ biosynthetic intermediate found to accumulate in the E. coli strain AN59, which contains the ubiB409 mutant allele. Analysis of the mutation in the E. coli strain AN59 reveals no mutations within the ubiB gene, but instead shows the presence of an IS1 element at position +516 of the ubiE gene. The ubiE gene encodes aC-methyltransferase required for the synthesis of both CoQ and menaquinone, and it is the 5′ gene in an operon containingubiE, yigP, and ubiB. The data indicate that octaprenylphenol accumulates in AN59 as a result of a polar effect of the ubiE::IS1mutation on the downstream ubiB gene. AN59 is complemented by a DNA segment containing the contiguous ubiE,yigP, and ubiB genes. Although transformation of AN59 with a DNA segment containing the ubiB coding region fails to restore CoQ biosynthesis, transformation with theubiE coding region results in a low-frequency but significant rescue attributed to homologous recombination. In addition, the fre gene, previously considered to correspond toubiB, was found not to be involved in CoQ biosynthesis. TheubiB gene is a member of a predicted protein kinase family of which the Saccharomyces cerevisiae ABC1 gene is the prototypic member. The possible protein kinase function of UbiB and Abc1 and the role these polypeptides may play in CoQ biosynthesis are discussed.

1999 ◽  
Vol 181 (5) ◽  
pp. 1530-1536 ◽  
Author(s):  
Kouacou Vincent Konan ◽  
Charles Yanofsky

ABSTRACT Expression of the degradative tryptophanase (tna) operon of Escherichia coli is regulated by catabolite repression and tryptophan-induced transcription antitermination. In cultures growing in the absence of added tryptophan, transcription of the structural genes of the tna operon is limited by Rho-dependent transcription termination in the leader region of the operon. Tryptophan induction prevents this Rho-dependent termination, and requires in-frame translation of a 24-residue leader peptide coding region, tnaC, that contains a single, crucial, Trp codon. Studies with a lacZ reporter construct lacking the spacer region between tnaC and the first major structural gene,tnaA, suggested that tryptophan induction might involvecis action by the TnaC leader peptide on the ribosome translating the tnaC coding region. The leader peptide was hypothesized to inhibit ribosome release at thetnaC stop codon, thereby blocking Rho’s access to the transcript. Regulatory studies with deletion constructs of thetna operon of Proteus vulgaris supported this interpretation. In the present study the putative role of thetnaC stop codon in tna operon regulation inE. coli was examined further by replacing the naturaltnaC stop codon, UGA, with UAG or UAA in atnaC-stop codon-tnaA′-′lacZ reporter construct. Basal level expression was reduced to 20 and 50% when the UGA stop codon was replaced by UAG or UAA, respectively, consistent with the finding that in E. coli translation terminates more efficiently at UAG and UAA than at UGA. Tryptophan induction was observed in strains with any of the stop codons. However, when UAG or UAA replaced UGA, the induced level of expression was also reduced to 15 and 50% of that obtained with UGA as the tnaC stop codon, respectively. Introduction of a mutant allele encoding a temperature-sensitive release factor 1, prfA1, increased basal level expression 60-fold when the tnaC stop codon was UAG and 3-fold when this stop codon was UAA; basal level expression was reduced by 50% in the construct with the natural stop codon, UGA. In strains with any of the three stop codons and the prfA1mutation, the induced levels of tna operon expression were virtually identical. The effects of tnaC stop codon identity on expression were also examined in the absence of Rho action, using tnaC-stop codon-′lacZ constructs that lack the tnaC-tnaA spacer region. Expression was low in the absence of tnaC stop codon suppression. In most cases, tryptophan addition resulted in about 50% inhibition of expression when UGA was replaced by UAG or UAA and the appropriate suppressor was present. Introduction of the prfA1 mutant allele increased expression of the suppressed construct with the UAG stop codon; tryptophan addition also resulted in ca. 50% inhibition. These findings provide additional evidence implicating the behavior of the ribosome translating tnaC in the regulation of tna operon expression.


1999 ◽  
Vol 65 (12) ◽  
pp. 5303-5306 ◽  
Author(s):  
Ana Cristina Adam ◽  
Gracia González-Blasco ◽  
Marta Rubio-Texeira ◽  
Julio Polaina

ABSTRACT We developed a system to monitor the transfer of heterologous DNA from a genetically manipulated strain of Saccharomyces cerevisiae to Escherichia coli. This system is based on a yeast strain that carries multiple integrated copies of a pUC-derived plasmid. The bacterial sequences are maintained in the yeast genome by selectable markers for lactose utilization. Lysates of the yeast strain were used to transformE. coli. Transfer of DNA was measured by determining the number of ampicillin-resistant E. coli clones. Our results show that transmission of the Ampr gene to E. coli by genetic transformation, caused by DNA released from the yeast, occurs at a very low frequency (about 50 transformants per μg of DNA) under optimal conditions (a highly competent host strain and a highly efficient transformation procedure). These results suggest that under natural conditions, spontaneous transmission of chromosomal genes from genetically modified organisms is likely to be rare.


1997 ◽  
Vol 17 (6) ◽  
pp. 2994-3004 ◽  
Author(s):  
M Kaouass ◽  
M Audette ◽  
D Ramotar ◽  
S Verma ◽  
D De Montigny ◽  
...  

Eukaryotic polyamine transport systems have not yet been characterized at the molecular level. We have used transposon mutagenesis to identify genes controlling polyamine transport in Saccharomyces cerevisiae. A haploid yeast strain was transformed with a genomic minitransposon- and lacZ-tagged library, and positive clones were selected for growth resistance to methylglyoxal bis(guanylhydrazone) (MGBG), a toxic polyamine analog. A 747-bp DNA fragment adjacent to the lacZ fusion gene rescued from one MGBG-resistant clone mapped to chromosome X within the coding region of a putative Ser/Thr protein kinase gene of previously unknown function (YJR059w, or STK2). A 304-amino-acid stretch comprising 11 of the 12 catalytic subdomains of Stk2p is approximately 83% homologous to the putative Pot1p/Kkt8p (Stk1p) protein kinase, a recently described activator of low-affinity spermine uptake in yeast. Saturable spermidine transport in stk2::lacZ mutants had an approximately fivefold-lower affinity and twofold-lower Vmax than in the parental strain. Transformation of stk2::lacZ cells with the STK2 gene cloned into a single-copy expression vector restored spermidine transport to wild-type levels. Single mutants lacking the catalytic kinase subdomains of STK1 exhibited normal parameters for the initial rate of spermidine transport but showed a time-dependent decrease in total polyamine accumulation and a low-level resistance to toxic polyamine analogs. Spermidine transport was repressed by prior incubation with exogenous spermidine. Exogenous polyamine deprivation also derepressed residual spermidine transport in stk2::lacZ mutants, but simultaneous disruption of STK1 and STK2 virtually abolished high-affinity spermidine transport under both repressed and derepressed conditions. On the other hand, putrescine uptake was also deficient in stk2::lacZ mutants but was not repressed by exogenous spermidine. Interestingly, stk2::lacZ mutants showed increased growth resistance to Li+ and Na+, suggesting a regulatory relationship between polyamine and monovalent inorganic cation transport. These results indicate that the putative STK2 Ser/Thr kinase gene is an essential determinant of high-affinity polyamine transport in yeast whereas its close homolog STK1 mostly affects a lower-affinity, low-capacity polyamine transport activity.


2010 ◽  
Vol 84 (13) ◽  
pp. 6876-6879 ◽  
Author(s):  
Paul C. M. Fogg ◽  
Heather E. Allison ◽  
Jon R. Saunders ◽  
Alan J. McCarthy

ABSTRACT Bacteriophage lambda has an archetypal immunity system, which prevents the superinfection of its Escherichia coli lysogens. It is now known that superinfection can occur with toxigenic lambda-like phages at a high frequency, and here we demonstrate that the superinfection of a lambda lysogen can lead to the acquisition of additional lambda genomes, which was confirmed by Southern hybridization and quantitative PCR. As many as eight integration events were observed but at a very low frequency (6.4 × 10−4) and always as multiple insertions at the established primary integration site in E. coli. Sequence analysis of the complete immunity region demonstrated that these multiply infected lysogens were not immunity mutants. In conclusion, although lambda superinfection immunity can be confounded, it is a rare event.


Biosensors ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 40
Author(s):  
Mohd Kamuri ◽  
Zurina Zainal Abidin ◽  
Mohd Yaacob ◽  
Mohd Hamidon ◽  
Nurul Md Yunus ◽  
...  

This paper describes the development of an integrated system using a dry film resistant (DFR) microfluidic channel consisting of pulsed field dielectrophoretic field-flow-fractionation (DEP-FFF) separation and optical detection. The prototype chip employs the pulse DEP-FFF concept to separate the cells (Escherichia coli and Saccharomyces cerevisiae) from a continuous flow, and the rate of release of the cells was measured. The separation experiments were conducted by changing the pulsing time over a pulsing time range of 2–24 s and a flow rate range of 1.2–9.6 μ L min − 1 . The frequency and voltage were set to a constant value of 1 M Hz and 14 V pk-pk, respectively. After cell sorting, the particles pass the optical fibre, and the incident light is scattered (or absorbed), thus, reducing the intensity of the transmitted light. The change in light level is measured by a spectrophotometer and recorded as an absorbance spectrum. The results revealed that, generally, the flow rate and pulsing time influenced the separation of E. coli and S. cerevisiae. It was found that E. coli had the highest rate of release, followed by S. cerevisiae. In this investigation, the developed integrated chip-in-a lab has enabled two microorganisms of different cell dielectric properties and particle size to be separated and subsequently detected using unique optical properties. Optimum separation between these two microorganisms could be obtained using a longer pulsing time of 12 s and a faster flow rate of 9.6 μ L min − 1 at a constant frequency, voltage, and a low conductivity.


2002 ◽  
Vol 184 (10) ◽  
pp. 2850-2853 ◽  
Author(s):  
Annie Conter ◽  
Rachel Sturny ◽  
Claude Gutierrez ◽  
Kaymeuang Cam

ABSTRACT The RcsCB His-Asp phosphorelay system regulates the expression of several genes of Escherichia coli, but the molecular nature of the inducing signal is still unknown. We show here that treatment of an exponentially growing culture of E. coli with the cationic amphipathic compound chlorpromazine (CPZ) stimulates expression of a set of genes positively regulated by the RcsCB system. This induction is abolished in rcsB or rcsC mutant strains. In addition, treatment with CPZ inhibits growth. The wild-type strain is able to recover from this inhibition and resume growth after a period of adaptation. In contrast, strains deficient in the RcsCB His-Asp phosphorelay system are hypersensitive to CPZ. These results suggest that cells must express specific RcsCB-regulated genes in order to cope with the CPZ-induced stress. This is the first report of the essential role of the RcsCB system in a stress situation. These results also strengthen the notion that alterations of the cell envelope induce a signal recognized by the RcsC sensor.


1997 ◽  
Vol 327 (3) ◽  
pp. 847-851 ◽  
Author(s):  
Zengji LI ◽  
Yue SUN ◽  
L. David THURLOW

Twenty-one RNA minihelices, resembling the coaxially stacked acceptor- /T-stems and T-loop found along the top of a tRNA's three-dimensional structure, were synthesized and used as substrates for ATP/CTP:tRNA nucleotidyltransferases from Escherichia coli and Saccharomyces cerevisiae. The sequence of nucleotides in the loop varied at positions corresponding to residues 56, 57 and 58 in the T-loop of a tRNA. All minihelices were substrates for both enzymes, and the identity of bases in the loop affected the interaction. In general, RNAs with purines in the loop were better substrates than those with pyrimidines, although no single base identity absolutely determined the effectiveness of the RNA as substrate. RNAs lacking bases near the 5ʹ-end were good substrates for the E. coli enzyme, but were poor substrates for that from yeast. The apparent Km values for selected minihelices were 2-3 times that for natural tRNA, and values for apparent Vmax were lowered 5-10-fold.


Microbiology ◽  
2009 ◽  
Vol 155 (11) ◽  
pp. 3589-3598 ◽  
Author(s):  
Gaylen A. Uhlich

Escherichia coli K-12 defends itself against peroxide-mediated oxidative damage using two catalases, KatG and KatE, and the peroxiredoxin, alkyl hydroperoxide reductase, encoded by ahpC. In E. coli O157 : H7 strain ATCC 43895 (EDL933), plasmid pO157 carries an additional catalase-peroxidase gene, katP. KatP has been shown to be a functional catalase-peroxidase. However, deletion of pO157 does not alter the peroxide resistance of strain EDL933, leaving the physiological role of katP unclear. To examine the individual roles of peroxide-resistance genes in E. coli O157 : H7, mutant strains of ATCC 43895 were constructed bearing individual deletions of katG, katE, katP and ahpC, as well as double, triple and quadruple deletions encompassing all possible gene combinations thereof. The wild-type and all 15 mutant strains were compared for differences in aerobic growth, ability to scavenge exogenous H2O2 and resistance to exogenous peroxides. Although KatG scavenged the most exogenous H2O2, KatP scavenged statistically greater amounts than either KatE or AhpC during exponential growth. However, katG and ahpC together were sufficient for full peroxide resistance in disc diffusion assays. Strains with only katG or ahpC were the only triple deletion strains with significantly shorter generation times than the quadruple deletion strain. ahpC was the only gene that could allow rapid transition from lag phase to exponential phase in a triple deletion strain. Gene expression studies revealed that katP is an OxyR-regulated gene, but its expression is suppressed in stationary phase by RpoS. These studies indicate that pO157-borne katP contributes to the complex gene network protecting strain 43895 from peroxide-mediated oxidative damage in an OxyR-dependent manner.


1979 ◽  
Vol 179 (1) ◽  
pp. 99-107 ◽  
Author(s):  
Jeffrey D. Hillman

NAD+-specific glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12) from Escherichia coli was purified to homogeneity by a relatively simple procedure involving affinity chromatography on agarose–hexane–NAD+ and repeated crystallization. Rabbit antiserum directed against this protein produced one precipitin line in double-diffusion studies against the pure enzyme, and two lines against crude extracts of wild-type E. coli strains. Both precipitin lines represent the interaction of antibody with determinants specific for glyceraldehyde 3-phosphate dehydrogenase. Nine independent mutants of E. coli lacking glyceraldehyde 3-phosphate dehydrogenase activity all possessed some antigenic cross-reacting material to the wild-type enzyme. The mutants could be divided into three groups on the basis of the types and amounts of precipitin lines observed in double-diffusion experiments; one group formed little cross-reacting material. The cross-reacting material in crude cell-free extracts of several of the mutant strains were also tested for alterations in their affinity for NAD+ and their phosphorylative activity. The cumulative data indicate that the protein in several of the mutant strains is severely altered, and thus that glyceraldehyde 3-phosphate dehydrogenase is unlikely to have an essential, non-catalytic function such as buffering nicotinamide nucleotide or glycolytic-intermediate concentrations. Others of the mutants tested have cross-reacting material which behaved like the wild-type enzyme for the several parameters studied; the proteins from these strains, once purified, might serve as useful analogues of the wild-type enzyme.


Sign in / Sign up

Export Citation Format

Share Document