scholarly journals Sinorhizobium meliloti Sulfotransferase That Modifies Lipopolysaccharide

2004 ◽  
Vol 186 (13) ◽  
pp. 4168-4176 ◽  
Author(s):  
Glen E. Cronan ◽  
David H. Keating

ABSTRACT Sinorhizobium meliloti is a gram-negative soil bacterium found either in free-living form or as a nitrogen-fixing endosymbiont of a plant structure called the nodule. Symbiosis between S. meliloti and its plant host alfalfa is dependent on bacterial transcription of nod genes, which encode the enzymes responsible for synthesis of Nod factor. S. meliloti Nod factor is a lipochitooligosaccharide that undergoes a sulfate modification essential for its biological activity. Sulfate also modifies the carbohydrate substituents of the bacterial cell surface, including lipopolysaccharide (LPS) and capsular polysaccharide (K-antigen) (R. A. Cedergren, J. Lee, K. L. Ross, and R. I. Hollingsworth, Biochemistry 34:4467-4477, 1995). We utilized the genomic sequence of S. meliloti to identify an open reading frame, SMc04267 (which we now propose to name lpsS), which encodes an LPS sulfotransferase activity. We expressed LpsS in Escherichia coli and demonstrated that the purified protein functions as an LPS sulfotransferase. Mutants lacking LpsS displayed an 89% reduction in LPS sulfotransferase activity in vitro. However, lpsS mutants retain approximately wild-type levels of sulfated LPS when assayed in vivo, indicating the presence of an additional LPS sulfotransferase activity(ies) in S. meliloti that can compensate for the loss of LpsS. The lpsS mutant did show reduced LPS sulfation, compared to that of the wild type, under conditions that promote nod gene expression, and it elicited a greater number of nodules than did the wild type during symbiosis with alfalfa. These results suggest that sulfation of cell surface polysaccharides and Nod factor may compete for a limiting pool of intracellular sulfate and that LpsS is required for optimal LPS sulfation under these conditions.

2002 ◽  
Vol 184 (23) ◽  
pp. 6681-6689 ◽  
Author(s):  
David H. Keating ◽  
Michael G. Willits ◽  
Sharon R. Long

ABSTRACT The Rhizobium-legume symbiosis involves the formation of a novel plant organ, the nodule, in which intracellular bacteria reduce molecular dinitrogen in exchange for plant photosynthates. Nodule development requires a bacterial signal referred to as Nod factor, which in Sinorhizobium meliloti is a β-(1,4)-linked tetramer of N-acetylglucosamine containing N-acyl and O-acetyl modifications at the nonreducing end and a critical 6-O-sulfate at the reducing end. This sulfate modification requires the action of three gene products: nodH, which catalyzes the sulfonyl transfer, and nodPQ, which produce the activated form of sulfate, 3′-phosphoadenosine-5′-phosphosulfate. It was previously reported that S. meliloti cell surface polysaccharides are also covalently modified by sulfate in a reaction dependent on NodPQ. We have further characterized this unique form of bacterial carbohydrate modification. Our studies have determined that one of the nodPQ mutant strains used in the initial study of sulfation of cell surface harbored a second unlinked mutation. We cloned the gene affected by this mutation (referred to as lps-212) and found it to be an allele of lpsL, a gene previously predicted to encode a UDP-glucuronic acid epimerase. We demonstrated that lpsL encoded a UDP-glucuronic acid epimerase activity that was reduced in the lps-212 mutant. The lps-212 mutation resulted in an altered lipopolysaccharide structure that was reduced in sulfate modification in vitro and in vivo. Finally, we determined that the lps-212 mutation resulted in a reduced ability to elicit the formation of plant nodules and by altered infection thread structures that aborted prematurely.


1998 ◽  
Vol 180 (18) ◽  
pp. 4950-4954 ◽  
Author(s):  
Guido Epple ◽  
Koen M. G. M. van der Drift ◽  
Jane E. Thomas-Oates ◽  
Otto Geiger

ABSTRACT Rhizobial capsular polysaccharides (RKPs) play an important role in the development of a nitrogen-fixing symbiosis with the plant host and in Sinorhizobium meliloti AK631 functionalrkpABCDEF genes are required for the production of RKPs. After cloning the rkpF gene, we overexpressed and purified the derived protein product (RkpF) in Escherichia coli. Like acyl carrier protein (ACP), the RkpF protein can be labeled in vivo with radioactive β-alanine added to the growth medium. If homogeneous RkpF protein is incubated with radiolabeled coenzyme A in the presence of purified holo-ACP synthase from E. coli, an in vitro transfer of 4′-phosphopantetheine to the RkpF protein can be observed. The conversion from apo-RkpF protein to holo-RkpF protein seems to go along with a major conformational change of the protein structure, because the holo-RkpF protein runs significantly faster on native polyacrylamide gel electrophoresis than the apo-RkpF protein. Electrospray mass spectrometric analysis reveals a mass of 9,585 for the apo-RkpF protein and a mass of 9,927 for the holo-RkpF protein. Our data show that RkpF is a novel ACP.


2000 ◽  
Vol 74 (7) ◽  
pp. 3353-3365 ◽  
Author(s):  
Chi-Long Lin ◽  
Che-Sheng Chung ◽  
Hans G. Heine ◽  
Wen Chang

ABSTRACT An immunodominant antigen, p35, is expressed on the envelope of intracellular mature virions (IMV) of vaccinia virus. p35 is encoded by the viral late gene H3L, but its role in the virus life cycle is not known. This report demonstrates that soluble H3L protein binds to heparan sulfate on the cell surface and competes with the binding of vaccinia virus, indicating a role for H3L protein in IMV adsorption to mammalian cells. A mutant virus defective in expression of H3L (H3L−) was constructed; the mutant virus has a small plaque phenotype and 10-fold lower IMV and extracellular enveloped virion titers than the wild-type virus. Virion morphogenesis is severely blocked and intermediate viral structures such as viral factories and crescents accumulate in cells infected with the H3L− mutant virus. IMV from the H3L− mutant virus are somewhat altered and less infectious than wild-type virions. However, cells infected by the mutant virus form multinucleated syncytia after low pH treatment, suggesting that H3L protein is not required for cell fusion. Mice inoculated intranasally with wild-type virus show high mortality and severe weight loss, whereas mice infected with H3L− mutant virus survive and recover faster, indicating that inactivation of the H3L gene attenuates virus virulence in vivo. In summary, these data indicate that H3L protein mediates vaccinia virus adsorption to cell surface heparan sulfate and is important for vaccinia virus infection in vitro and in vivo. In addition, H3L protein plays a role in virion assembly.


Microbiology ◽  
2020 ◽  
Vol 166 (5) ◽  
pp. 484-497 ◽  
Author(s):  
Alejandra Arteaga Ide ◽  
Victor M. Hernández ◽  
Liliana Medina-Aparicio ◽  
Edson Carcamo-Noriega ◽  
Lourdes Girard ◽  
...  

In bacteria, l-arginine is a precursor of various metabolites and can serve as a source of carbon and/or nitrogen. Arginine catabolism by arginase, which hydrolyzes arginine to l-ornithine and urea, is common in nature but has not been studied in symbiotic nitrogen-fixing rhizobia. The genome of the alfalfa microsymbiont Sinorhizobium meliloti 1021 has two genes annotated as arginases, argI1 (smc03091) and argI2 (sma1711). Biochemical assays with purified ArgI1 and ArgI2 (as 6His-Sumo-tagged proteins) showed that only ArgI1 had detectable arginase activity. A 1021 argI1 null mutant lacked arginase activity and grew at a drastically reduced rate with arginine as sole nitrogen source. Wild-type growth and arginase activity were restored in the argI1 mutant genetically complemented with a genomically integrated argI1 gene. In the wild-type, arginase activity and argI1 transcription were induced several fold by exogenous arginine. ArgI1 purified as a 6His-Sumo-tagged protein had its highest in vitro enzymatic activity at pH 7.5 with Ni2+ as cofactor. The enzyme was also active with Mn2+ and Co2+, both of which gave the enzyme the highest activities at a more alkaline pH. The 6His-Sumo-ArgI1 comprised three identical subunits based on the migration of the urea-dissociated protein in a native polyacrylamide gel. A Lrp-like regulator (smc03092) divergently transcribed from argI1 was required for arginase induction by arginine or ornithine. This regulator was designated ArgIR. Electrophoretic mobility shift assays showed that purified ArgIR bound to the argI1 promoter in a region preceding the predicted argI1 transcriptional start. Our results indicate that ArgI1 is the sole arginase in S. meliloti , that it contributes substantially to arginine catabolism in vivo and that argI1 induction by arginine is dependent on ArgIR.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 347-347
Author(s):  
Susan A Maroney ◽  
Josephine P Ferrel ◽  
Alan E. Mast

Abstract Abstract 347 Tissue Factor Pathway Inhibitor (TFPI) is the primary physiological inhibitor of TF-fVIIa, the in vivo activator of blood coagulation. TFPI is an alternatively spliced protein with two major isoforms, TFPI-alpha and TFPI-beta. These isoforms differ in their C-terminal domain structure and their mechanism for cell surface attachment with TFPI-alpha indirectly associating with the endothelial surface through binding to a GPI-floated protein while TFPI-beta is directly attached to a GPI-float. In addition, the isoforms are differentially expressed in mouse tissues, with TFPI-alpha present in placenta, embryo and platelets, while TFPI-beta is the predominant isoform in adult vascular beds. However, TFPI-beta has ∼20-fold decreased activity when compared to TFPI-alpha in solution phase plasma clotting assays. We hypothesized that TFPI-beta will have more physiologically relevant activity when associated with a cell surface instead of in solution phase. To test this hypothesis, a CHO cell system that allows measurement of the anti-TF activity of different cell surface forms of TFPI in both in vitro and in vivo assays was developed. CHO cells were stably transfected with TF creating CHO-TF cells. In contrast to wild type CHO cells, CHO-TF cells 1) generate fXa in vitro in the presence of fVIIa, fX and calcium ions, 2) migrate through matrigel in transwell assays, and 3) produce tumors in the lungs of SCID mice following tail vein injection. The ability of solution phase TFPI-alpha and TFPI-beta to inhibit TF-fVIIa mediated fXa generation on the surface of the CHO-TF cells was examined with amidolytic assays. The Ki(final) for TFPI-alpha and TFPI-beta were 5.81 nM and 21.6 nM, respectively, confirming that solution phase TFPI-beta has decreased inhibitory activity. To examine the activity of cell surface associated TFPI-beta, CHO-TF cells were co-transfected with either TFPI-beta or equal amounts of an altered form of TFPI, called K1K2K3-GPI that is similar to TFPI-alpha but lacks its basic C-terminal region. Forms of TFPI containing the basic C-terminal region with a GPI-float could not be studied because they were not expressed by the CHO cells. CHO-TF cells expressing TFPI-beta had equal inhibitory activity to that observed in CHO-TF cells with K1K2K3-GPI suggesting that TFPI-beta is a potent inhibitor of TF activity when associated with the cell surface. The activity of cell surface associated TFPI-beta was further examined in transwell migration assays. The number of cells migrating through matrigel in multiple 20X fields was averaged. In this assay, cell surface associated TFPI-beta was a potent inhibitor of TF activity. The results are as follows: wild type CHO cells—6.6+/−4.1; CHO-TF cells—98.0+/−32.5; CHO-TF cells with TFPI-beta—9.05+/−7.0; CHO-TF cells with K1K2K3-GPI—43.5+/−21.5. Migration of CHO-TF cells was blocked using argatroban, an active site directed inhibitor of thrombin (15.0+/−4.5 CHO-TF cells migrated in the presence of 100 micromolar argatroban), demonstrating that the likely mechanism for the TF-mediated cell migration is generation of thrombin with cellular activation through cleavage of protease activated receptors. In the SCID tumor model, the severity of lung tumor burden was graded as 1–4 by a pathologist blinded to the cell type injected, n=5-8 per group. Average scores were: wild type CHO cells—1.17; CHO-TF cells 2.80; CHO-TF cells with TFPI-beta—2.14; demonstrating that cell surface associated TFPI-beta is an effective inhibitor of TF activity in vivo. Thus, while TFPI-beta has limited anticoagulant activity when examined in solution phase assays in vitro, evaluation of cell surface associated TFPI-beta reveals that it is a highly effective inhibitor of TF-fVIIa activity both in vitro and in vivo. Disclosures: Mast: Novo Nordisk: Research Funding; Siemens: Speakers Bureau.


2002 ◽  
Vol 70 (10) ◽  
pp. 5454-5461 ◽  
Author(s):  
Philippe Giammarinaro ◽  
James C. Paton

ABSTRACT As part of a study of virulence gene regulation in Streptococcus pneumoniae, we have identified a gene encoding a homologue of the staphylococcal catabolite control protein CcpA in the pneumococcal genome sequence. The pneumococcal protein, designated RegM, has significant similarity to members of the LacI/GalR family of bacterial regulatory proteins. S. pneumoniae D39 derivatives with insertion-duplication or deletion mutations in regM were significantly attenuated in virulence with respect to the wild-type strain. In defined media containing either sucrose or lactose as sole carbon sources, the in vitro growth rates of D39 and the regM mutants were essentially the same. However, in the presence of galactose the regM mutants grew significantly faster than the wild-type strain, whereas growth rates were significantly lower in the presence of glucose or maltose. These data are consistent with the involvement of regM in the catabolism of carbohydrates in S. pneumoniae. RegM was a repressor of both α-glucosidase and β-galactosidase activities in S. pneumoniae, but unlike the situation in certain other bacteria, it does not mediate the repression of these enzymes by glucose. The observed attenuation in virulence was not attributable to poorer growth of the regM mutants in mouse blood ex vivo, but nevertheless, the mutants were rapidly cleared from the blood of infected mice in vivo. The regM mutation had no apparent impact on expression of several confirmed pneumococcal virulence proteins, but studies employing a lacZ transcriptional fusion construct indicated that mutation of regM resulted in a significant reduction in transcription of the capsular polysaccharide biosynthesis locus (cps). Thus, regM is the first gene outside of the cps locus to be implicated in regulation of capsular gene expression.


2009 ◽  
Vol 29 (12) ◽  
pp. 3390-3400 ◽  
Author(s):  
Lakshmi Bugga ◽  
Anuradha Ratnaparkhi ◽  
Kai Zinn

ABSTRACT Receptor-linked protein-tyrosine phosphatases (RPTPs) are essential regulators of axon guidance and synaptogenesis in Drosophila, but the signaling pathways in which they function are poorly defined. We identified the cell surface receptor Tartan (Trn) as a candidate substrate for the neuronal RPTP Ptp52F by using a modified two-hybrid screen with a substrate-trapping mutant of Ptp52F as “bait.” Trn can bind to the Ptp52F substrate-trapping mutant in transfected Drosophila S2 cells if v-Src kinase, which phosphorylates Trn, is also expressed. Coexpression of wild-type Ptp52F causes dephosphorylation of v-Src-phosphorylated Trn. To examine the specificity of the interaction in vitro, we incubated Ptp52F-glutathione S-transferase (GST) fusion proteins with pervanadate-treated S2 cell lysates. Wild-type Ptp52F dephosphorylated Trn, as well as most other bands in the lysate. GST “pulldown” experiments demonstrated that the Ptp52F substrate-trapping mutant binds exclusively to phospho-Trn. Wild-type Ptp52F pulled down dephosphorylated Trn, suggesting that it forms a stable Ptp52F-Trn complex that persists after substrate dephosphorylation. To evaluate whether Trn and Ptp52F are part of the same pathway in vivo, we examined motor axon guidance in mutant embryos. trn and Ptp52F mutations produce identical phenotypes affecting the SNa motor nerve. The genes also display dosage-dependent interactions, suggesting that Ptp52F regulates Trn signaling in SNa motor neurons.


2019 ◽  
Vol 41 (1) ◽  
Author(s):  
Xu Tian ◽  
Youjun Chen ◽  
Jun Nakamura

Abstract Background Accumulation of somatic mutations caused by both endogenous and exogenous exposures is a high risk for human health, in particular, cancer. Efficient detection of somatic mutations is crucial for risk assessment of different types of exposures. Due to its requirement in the process of attaching glycosylphatidylinositol- (GPI-) anchored proteins to the cell surface, the PIG-A gene located on the X-chromosome is used in both in vivo and in vitro mutation assays. Loss-of-function mutations in PIG-A lead to the elimination of GPI-anchored proteins such that they can no longer be detected on the cell surface by antibodies. Historically, mutation assays based on the PIG-A gene rely on the staining of these cell-surface proteins by antibodies; however, as with any antibody-based assay, there are major limitations, especially in terms of variability and lack of specific antibodies. Results In the current study, we developed a modified PIG-A mutation assay that uses the expression of GPI-anchored fluorescent proteins (henceforth referred to as a GPI-sensor), whereby the presence of fluorescence on the cell membrane is dependent on the expression of wild-type PIG-A. Using our modified PIG-A mutation assay, we have achieved complete separation of wild type cells and spontaneously mutated cells, in which the presence of PIG-A mutations has been confirmed via proaerolysin resistance and gene sequencing. Conclusion This study establishes a novel PIG-A mutation assay using GPI-anchored fluorescent protein expression that eliminates the need for antibody-based staining. This GPI-sensor PIG-A mutation assay should be widely applicable for accurate and efficient testing of genotoxicity for use in many mammalian and vertebrate cells.


2021 ◽  
Vol 11 (15) ◽  
pp. 6865
Author(s):  
Eun Seon Lee ◽  
Joung Hun Park ◽  
Seong Dong Wi ◽  
Ho Byoung Chae ◽  
Seol Ki Paeng ◽  
...  

The thioredoxin-h (Trx-h) family of Arabidopsis thaliana comprises cytosolic disulfide reductases. However, the physiological function of Trx-h2, which contains an additional 19 amino acids at its N-terminus, remains unclear. In this study, we investigated the molecular function of Trx-h2 both in vitro and in vivo and found that Arabidopsis Trx-h2 overexpression (Trx-h2OE) lines showed significantly longer roots than wild-type plants under cold stress. Therefore, we further investigated the role of Trx-h2 under cold stress. Our results revealed that Trx-h2 functions as an RNA chaperone by melting misfolded and non-functional RNAs, and by facilitating their correct folding into active forms with native conformation. We showed that Trx-h2 binds to and efficiently melts nucleic acids (ssDNA, dsDNA, and RNA), and facilitates the export of mRNAs from the nucleus to the cytoplasm under cold stress. Moreover, overexpression of Trx-h2 increased the survival rate of the cold-sensitive E. coli BX04 cells under low temperature. Thus, our data show that Trx-h2 performs function as an RNA chaperone under cold stress, thus increasing plant cold tolerance.


2021 ◽  
pp. 1-24
Author(s):  
Juho-Matti Renko ◽  
Arun Kumar Mahato ◽  
Tanel Visnapuu ◽  
Konsta Valkonen ◽  
Mati Karelson ◽  
...  

Background: Parkinson’s disease (PD) is a progressive neurological disorder where loss of dopamine neurons in the substantia nigra and dopamine depletion in the striatum cause characteristic motor symptoms. Currently, no treatment is able to halt the progression of PD. Glial cell line-derived neurotrophic factor (GDNF) rescues degenerating dopamine neurons both in vitro and in animal models of PD. When tested in PD patients, however, the outcomes from intracranial GDNF infusion paradigms have been inconclusive, mainly due to poor pharmacokinetic properties. Objective: We have developed drug-like small molecules, named BT compounds that activate signaling through GDNF’s receptor, the transmembrane receptor tyrosine kinase RET, both in vitro and in vivo and are able to penetrate through the blood-brain barrier. Here we evaluated the properties of BT44, a second generation RET agonist, in immortalized cells, dopamine neurons and rat 6-hydroxydopamine model of PD. Methods: We used biochemical, immunohistochemical and behavioral methods to evaluate the effects of BT44 on dopamine system in vitro and in vivo. Results: BT44 selectively activated RET and intracellular pro-survival AKT and MAPK signaling pathways in immortalized cells. In primary midbrain dopamine neurons cultured in serum-deprived conditions, BT44 promoted the survival of the neurons derived from wild-type, but not from RET knockout mice. BT44 also protected cultured wild-type dopamine neurons from MPP +-induced toxicity. In a rat 6-hydroxydopamine model of PD, BT44 reduced motor imbalance and could have protected dopaminergic fibers in the striatum. Conclusion: BT44 holds potential for further development into a novel, possibly disease-modifying therapy for PD.


Sign in / Sign up

Export Citation Format

Share Document