scholarly journals Phosphorylation and RsbX-Dependent Dephosphorylation of RsbR in the RsbR-RsbS Complex of Bacillus subtilis

2004 ◽  
Vol 186 (20) ◽  
pp. 6830-6836 ◽  
Author(s):  
Chien-Cheng Chen ◽  
Michael D. Yudkin ◽  
Olivier Delumeau

ABSTRACT In the pathway that controls σB activity, the RsbR-RsbS complex plays an important role by trapping RsbT, a positive regulator of σB of Bacillus subtilis. We have proposed that at the onset of stress, RsbR becomes phosphorylated, resulting in an enhanced activity of RsbT towards RsbS. RsbT is then free to interact with and activate RsbU, which in turn ultimately activates σB. In this study with purified proteins, we used mutant RsbR proteins to analyze the role of its phosphorylatable threonine residues. The results show that the phosphorylation of either of the two RsbT-phosphorylatable threonine residues (T171 and T205) in RsbR enhanced the kinase activity of RsbT towards RsbS. However, it appeared that RsbT preferentially phosphorylates T171. We also present in vitro evidence that identifies RsbX as a potential phosphatase for RsbR T205.

Author(s):  
Cecilia Valencia ◽  
Felipe Alonso Pérez ◽  
Carola Matus ◽  
Ricardo Felmer ◽  
María Elena Arias

Abstract The present study evaluated the mechanism by which protein synthesis inhibitors activate bovine oocytes. The aim was to analyze the dynamics of MPF and MAPKs. MII oocytes were activated with ionomycin (Io), ionomycin+anisomycin (ANY) and ionomycin+cycloheximide (CHX) and by in vitro fertilization (IVF). The expression of cyclin B1, p-CDK1, p-ERK1/2, p-JNK, and p-P38 were evaluated by immunodetection and the kinase activity of ERK1/2 was measured by enzyme assay. Evaluations at 1, 4, and 15 hours postactivation (hpa) showed that the expression of cyclin B1 was not modified by the treatments. ANY inactivated MPF by p-CDK1Thr14-Tyr15 at 4 hpa (P < 0.05), CHX increased pre-MPF (p-CDK1Thr161 and p-CDK1Thr14-Tyr15) at 1 hpa and IVF increased p-CDK1Thr14-Tyr15 at 17 hours postfertilization (hpf) (P < 0.05). ANY and CHX reduced the levels of p-ERK1/2 at 4 hpa (P < 0.05) and its activity at 4 and 1 hpa, respectively (P < 0.05). Meanwhile, IVF increased p-ERK1/2 at 6 hpf (P < 0.05); however, its kinase activity decreased at 6 hpf (P < 0.05). p-JNK in ANY, CHX, and IVF oocytes decreased at 4 hpa (P < 0.05). p-P38 was only observed at 1 hpa, with no differences between treatments. In conclusion, activation of bovine oocytes by ANY, CHX, and IVF inactivates MPF by CDK1-dependent specific phosphorylation without cyclin B1 degradation. ANY or CHX promoted this inactivation, which seemed to be more delayed in the physiological activation (IVF). Both inhibitors modulated MPF activity via an ERK1/2-independent pathway, whereas IVF activated the bovine oocytes via an ERK1/2-dependent pathway. Finally, ANY does not activate the JNK and P38 kinase pathways.


2012 ◽  
Vol 13 (6) ◽  
pp. 856-866
Author(s):  
Prasanta Kumar Swain ◽  
Sharanbasappa C Nagaral ◽  
Pawan Kumar Kamalapurker ◽  
Ravishankar Damineni

ABSTRACT Aim The current study has been chosen to evaluate the efficacy of calcium hypochlorite as a disinfecting additive for the gypsum products and its effect on compressive and tensile strength of the set material. It is hypothesized that, the addition of calcium hypochlorite to type V dental stone in sufficient quantity to disinfect the material would have no deleterious effect on compressive or tensile strength. Materials and methods Total of 160 samples made up of type V dental stone were divided broadly into two groups of 80 samples each for the sake of compressive and tensile strength testing in dry and wet conditions: Out of each group, 10 samples without addition of any disinfectant (0% calcium hypochlorite) was compared with other group of 30 samples after adding disinfectant, i.e. each subgroup containing 10 samples each (0.5, 1.0 and 1.5% calcium hypochlorite). Conclusion Within limitations of this in vitro study it is assumed to prepare type V dental stone that contains a disinfectant, has adequate compressive strength and tensile strength, and can significantly act against a resistant species like Bacillus subtilis. Clinical significance When calcium hypochlorite was added to dental stone, extra mixing water was required to produce a material of nearly same pouring consistency. The samples, which were put to microbiological tests, showed effective action of disinfectant on Bacillus subtilis. No deleterious effect on compressive or tensile strength could be found after putting the selected samples with calcium hypochlorite. How to cite this article Swain PK, Nagaral SC, Kamalapurker PK, Damineni R. Promising Role of Calcium Hypochlorite as a Disinfectant: An in vitro Evaluation Regarding its Effect on Type V Dental Stone. J Contemp Dent Pract 2012;13(6):856-866.


2012 ◽  
Vol 40 (5) ◽  
pp. 1058-1062 ◽  
Author(s):  
Elisa Greggio

Interest in studying the biology of LRRK2 (leucine-rich repeat kinase 2) started in 2004 when missense mutations in the LRRK2 gene were linked to an inherited form of Parkinson's disease with clinical and pathological presentation resembling the sporadic syndrome. LRRK2 is a complex molecule containing domains implicated in protein interactions, as well as kinase and GTPase activities. The observation that the common G2019S mutation increases kinase activity in vitro suggests that altered phosphorylation of LRRK2 targets may have pathological outcomes. Given that protein kinases are ideal targets for drug therapies, much effort has been directed at understanding the role of LRRK2 kinase activity on disease onset. However, no clear physiological substrates have been identified to date, indicating that much research is still needed to fully understand the signalling pathways orchestrated by LRRK2 and deregulated under pathological conditions.


2003 ◽  
Vol 185 (22) ◽  
pp. 6728-6731 ◽  
Author(s):  
Pekka Rappu ◽  
Terhi Pullinen ◽  
Pekka Mäntsälä

ABSTRACT The Bacillus subtilis PurR mediates adenine repression and guanosine induction of purA. PRPP inhibits binding of PurR to DNA in vitro. Mutations in the PRPP binding motif of PurR caused strong repression regardless of purine exclusions or additions, establishing the role of PRPP as regulator of PurR.


2000 ◽  
Vol 20 (16) ◽  
pp. 5858-5864 ◽  
Author(s):  
Gregory J. Reynard ◽  
William Reynolds ◽  
Rati Verma ◽  
Raymond J. Deshaies

ABSTRACT p13suc1 (Cks) proteins have been implicated in the regulation of cyclin-dependent kinase (CDK) activity. However, the mechanism by which Cks influences the function of cyclin-CDK complexes has remained elusive. We show here that Cks1 is required for the protein kinase activity of budding yeast G1 cyclin-CDK complexes. Cln2 and Cdc28 subunits coexpressed in baculovirus-infected insect cells fail to exhibit protein kinase activity towards multiple substrates in the absence of Cks1. Cks1 can both stabilize Cln2-Cdc28 complexes and activate intact complexes in vitro, suggesting that it plays multiple roles in the biogenesis of active G1cyclin-CDK complexes. In contrast, Cdc28 forms stable, active complexes with the B-type cyclins Clb4 and Clb5 regardless of whether Cks1 is present. The levels of Cln2-Cdc28 and Cln3-Cdc28 protein kinase activity are severely reduced in cks1-38 cell extracts. Moreover, phosphorylation of G1 cyclins, which depends on Cdc28 activity, is reduced in cks1-38 cells. The role of Cks1 in promoting G1 cyclin-CDK protein kinase activity both in vitro and in vivo provides a simple molecular rationale for the essential role of CKS1 in progression through G1 phase in budding yeast.


2008 ◽  
Vol 190 (14) ◽  
pp. 5132-5136 ◽  
Author(s):  
Jeffrey G. Gardner ◽  
Jorge C. Escalante-Semerena

ABSTRACT The acuABC genes of Bacillus subtilis comprise a putative posttranslational modification system. The AcuA protein is a member of the Gcn5-related N-acetyltransferase (GNAT) superfamily, the AcuC protein is a class I histone deacetylase, and the role of the AcuB protein is not known. AcuA controls the activity of acetyl coenzyme A synthetase (AcsA; EC 6.2.1.1) in this bacterium by acetylating residue Lys549. Here we report the kinetic analysis of wild-type and variant AcuA proteins. We contrived a genetic scheme for the identification of AcuA residues critical for activity. Changes at residues H177 and G187 completely inactivated AcuA and led to its rapid turnover. Changes at residues R42 and T169 were less severe. In vitro assay conditions were optimized, and an effective means of inactivating the enzyme was found. The basic kinetic parameters of wild-type and variant AcuA proteins were obtained and compared to those of eukaryotic GNATs. Insights into how the isolated mutations may exert their deleterious effect were investigated by using the crystal structure of an AcuA homolog.


2020 ◽  
Author(s):  
Adamantios Mamais ◽  
Natalie Landeck ◽  
Rebekah G. Langston ◽  
Luis Bonet-Ponce ◽  
Nathan Smith ◽  
...  

AbstractMutations in leucine-rich repeat kinase 2 (LRRK2) cause autosomal dominant Parkinson’s disease (PD) while polymorphic LRRK2 variants are associated with sporadic PD. PD-linked mutations increase LRRK2 kinase activity and induce neurotoxicity in vitro and in vivo. The small GTPase Rab8a is a LRRK2 kinase substrate and is involved in receptor-mediated recycling and endocytic trafficking of transferrin, but the effect of PD-linked LRRK2 mutations on the function of Rab8a are poorly understood. Here, we show that gain-of-function mutations in LRRK2 induce sequestration of endogenous Rab8a into lysosomes in cells while pharmacological inhibition of LRRK2 kinase activity reverses this phenotype. Furthermore, we show that LRRK2 mutations drive accumulation of endocytosed transferrin into Rab8a-positive lysosomes leading to a dysregulation of iron transport. LRRK2 has been nominated as an integral part of cellular responses downstream of proinflammatory signals and is activated in microglia in post-mortem PD tissue. Here, we show that iPSC-derived microglia from patients carrying the most common LRRK2 mutation, G2019S, mistraffic transferrin to lysosomes proximal to the nucleus in proinflammatory conditions. Furthermore, G2019S knock-in mice show significant increase in iron deposition in microglia following intrastriatal LPS injection compared to wild type mice, accompanied by striatal accumulation of ferritin. Our data support a role of LRRK2 in modulating iron uptake and storage in response to proinflammatory stimuli in microglia.


1998 ◽  
Vol 180 (15) ◽  
pp. 4007-4010 ◽  
Author(s):  
Ying Qi ◽  
F. Marion Hulett

ABSTRACT tagA, tagD, and tuaA operons are responsible for the synthesis of cell wall anionic polymer, teichoic acid, and teichuronic acid, respectively, in Bacillus subtilis. Under phosphate starvation conditions, teichuronic acid is synthesized while teichoic acid synthesis is inhibited. Expression of these genes is controlled by PhoP-PhoR, a two-component system. It has been proposed that PhoP∼P plays a key role in the activation oftuaA and the repression of tagA andtagD. In this study, we demonstrated the role of PhoP∼P in the switch process from teichoic acid synthesis to teichuronic acid synthesis, by using an in vitro transcription system. The results indicate that PhoP∼P is sufficient to repress the transcription of the tagA and tagD promoters and also to activate the transcription of the tuaA promoter.


Sign in / Sign up

Export Citation Format

Share Document