scholarly journals Pseudomonas syringae Type III Chaperones ShcO1, ShcS1, and ShcS2 Facilitate Translocation of Their Cognate Effectors and Can Substitute for Each Other in the Secretion of HopO1-1

2005 ◽  
Vol 187 (12) ◽  
pp. 4257-4269 ◽  
Author(s):  
Ming Guo ◽  
Scott T. Chancey ◽  
Fang Tian ◽  
Zhengxiang Ge ◽  
Yashitola Jamir ◽  
...  

ABSTRACT The Pseudomonas syringae type III secretion system (TTSS) translocates effector proteins into plant cells. Several P. syringae effectors require accessory proteins called type III chaperones (TTCs) to be secreted via the TTSS. We characterized the hopO1-1, hopS1, and hopS2 operons in P. syringae pv. tomato DC3000; these operons encode three homologous TTCs, ShcO1, ShcS1, and ShcS2. ShcO1, ShcS1, and ShcS2 facilitated the type III secretion and/or translocation of their cognate effectors HopO1-1, HopS1, and HopS2, respectively. ShcO1 and HopO1-1 interacted with each other in yeast two-hybrid and coimmunoprecipitation assays. Interestingly, ShcS1 and ShcS2 were capable of substituting for ShcO1 in facilitating HopO1-1 secretion and translocation and each TTC was able to bind the other's cognate effectors in yeast two-hybrid assays. Moreover, ShcO1, ShcS1, and ShcS2 all bound to the middle-third region of HopO1-1. The HopS2 effector possessed atypical P. syringae TTSS N-terminal characteristics and was translocated in low amounts. A site-directed HopS2 mutation that introduced a common N-terminal characteristic from other P. syringae type III secreted substrates increased HopS2 translocation, supporting the idea that this characteristic functions as a secretion signal. Additionally, hopO1-2 and hopT1-2 were shown to encode effectors secreted via the DC3000 TTSS. Finally, a DC3000 hopO1-1 operon deletion mutant produced disease symptoms similar to those seen with wild-type DC3000 but was reduced in its ability to multiply in Arabidopsis thaliana. The existence of TTCs that can bind to dissimilar effectors and that can substitute for each other in effector secretion provides insights into the nature of how TTCs function.

Microbiology ◽  
2005 ◽  
Vol 151 (1) ◽  
pp. 269-280 ◽  
Author(s):  
Ute Kabisch ◽  
Angelika Landgraf ◽  
Jana Krause ◽  
Ulla Bonas ◽  
Jens Boch

The hrp-type III secretion (TTS) system is a key pathogenicity factor of the plant pathogen Pseudomonas syringae pv. tomato DC3000 that translocates effector proteins into the cytosol of the eukaryotic host cell. The translocation of a subset of effectors is dependent on specific chaperones. In this study an operon encoding a TTS chaperone (ShcS1) and the truncated effector HopS1′ was characterized. Yeast two-hybrid analysis and pull-down assays demonstrated that these proteins interact. Using protein fusions to AvrRpt2 it was shown that ShcS1 facilitates the translocation of HopS1′, suggesting that ShcS1 is a TTS chaperone for HopS1′ and that amino acids 1 to 118 of HopS1′ are required for translocation. P. syringae pv. tomato DC3000 carries two shcS1 homologues, shcO1 and shcS2, which are located in different operons, and both operons include additional putative effector genes. Transcomplementation experiments showed that ShcS1 and ShcO1, but not ShcS2, can facilitate the translocation of HopS1′ : : AvrRpt2. To characterize the specificities of the putative chaperones, yeast two-hybrid interaction studies were performed between the three chaperones and putative target effectors. These experiments showed that both ShcS1 and ShcO1 bind to two different effectors, HopS1′ and HopO1-1, that share only 16 % amino acid sequence identity. Using gel filtration it was shown that ShcS1 forms homodimers, and this was confirmed by yeast two-hybrid experiments. In addition, ShcS1 is also able to form heterodimers with ShcO1. These data demonstrate that ShcS1 and ShcO1 are exceptional class IA TTS chaperones because they can bind more than one target effector.


Microbiology ◽  
2003 ◽  
Vol 149 (8) ◽  
pp. 2093-2106 ◽  
Author(s):  
Elizabeth A. Creasey ◽  
Robin M. Delahay ◽  
Sarah J. Daniell ◽  
Gad Frankel

Many Gram-negative pathogens employ a specific secretion pathway, termed type III secretion, to deliver virulence effector proteins directly to the membranes and cytosol of host eukaryotic cells. Subsequent functions of many effector proteins delivered in this manner result in subversion of host-signalling pathways to facilitate bacterial entry, survival and dissemination to neighbouring cells and tissues. Whereas the secreted components of type III secretion systems (TTSSs) from different pathogens are structurally and functionally diverse, the structural components and the secretion apparatus itself are largely conserved. TTSSs are large macromolecular assemblies built through interactions between protein components of hundreds of individual subunits. The goal of this project was to screen, using the standard yeast two-hybrid system, pair-wise interactions between components of the enteropathogenic Escherichia coli TTSS. To this end 37 of the 41 genes encoded by the LEE pathogenicity island were cloned into both yeast two-hybrid system vectors and all possible permutations of interacting protein pairs were screened for. This paper reports the identification of 22 novel interactions, including interactions between inner-membrane structural TTSS proteins; between the type III secreted translocator protein EspD and structural TTSS proteins; between established and putative chaperones and their cognate secreted proteins; and between proteins of undefined function.


2010 ◽  
Vol 23 (2) ◽  
pp. 198-210 ◽  
Author(s):  
Christopher R. Clarke ◽  
Rongman Cai ◽  
David J. Studholme ◽  
David S. Guttman ◽  
Boris A. Vinatzer

Pseudomonas syringae is best known as a plant pathogen that causes disease by translocating immune-suppressing effector proteins into plant cells through a type III secretion system (T3SS). However, P. syringae strains belonging to a newly described phylogenetic subgroup (group 2c) are missing the canonical P. syringae hrp/hrc cluster coding for a T3SS, flanking effector loci, and any close orthologue of known P. syringae effectors. Nonetheless, P. syringae group 2c strains are common leaf colonizers and grow on some tested plant species to population densities higher than those obtained by other P. syringae strains on nonhost species. Moreover, group 2c strains have genes necessary for the production of phytotoxins, have an ice nucleation gene, and, most interestingly, contain a novel hrp/hrc cluster, which is only distantly related to the canonical P. syringae hrp/hrc cluster. This hrp/hrc cluster appears to encode a functional T3SS although the genes hrpK and hrpS, present in the classical P. syringae hrp/hrc cluster, are missing. The genome sequence of a representative group 2c strain also revealed distant orthologues of the P. syringae effector genes avrE1 and hopM1 and the P. aeruginosa effector genes exoU and exoY. A putative life cycle for group 2c P. syringae is discussed.


2009 ◽  
Vol 22 (1) ◽  
pp. 96-106 ◽  
Author(s):  
Ayako Furutani ◽  
Minako Takaoka ◽  
Harumi Sanada ◽  
Yukari Noguchi ◽  
Takashi Oku ◽  
...  

Many gram-negative bacteria secrete so-called effector proteins via a type III secretion (T3S) system. Through genome screening for genes encoding potential T3S effectors, 60 candidates were selected from rice pathogen Xanthomonas oryzae pv. oryzae MAFF311018 using these criteria: i) homologs of known T3S effectors in plant-pathogenic bacteria, ii) genes with expression regulated by hrp regulatory protein HrpX, or iii) proteins with N-terminal amino acid patterns associated with T3S substrates of Pseudomonas syringae. Of effector candidates tested with the Bordetella pertussis calmodulin-dependent adenylate cyclase reporter for translocation into plant cells, 16 proteins were translocated in a T3S system-dependent manner. Of these 16 proteins, nine were homologs of known effectors in other plant-pathogenic bacteria and seven were not. Most of the effectors were widely conserved in Xanthomonas spp.; however, some were specific to X. oryzae. Interestingly, all these effectors were expressed in an HrpX-dependent manner, suggesting coregulation of effectors and the T3S system. In X. campestris pv. vesicatoria, HpaB and HpaC (HpaP in X. oryzae pv. oryzae) have a central role in recruiting T3S substrates to the secretion apparatus. Secretion of all but one effector was reduced in both HpaB– and HpaP– mutant strains, indicating that HpaB and HpaP are widely involved in efficient secretion of the effectors.


Microbiology ◽  
2010 ◽  
Vol 156 (6) ◽  
pp. 1805-1814 ◽  
Author(s):  
R. Boonyom ◽  
M. H. Karavolos ◽  
D. M. Bulmer ◽  
C. M. A. Khan

Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important pathogen and a causative agent of gastroenteritis. During infection, S. Typhimurium assembles molecular-needle complexes termed type III secretion (T3S) systems to translocate effector proteins from the bacterial cytoplasm directly into the host cell. The T3S signals that direct the secretion of effectors still remain enigmatic. SopD is a key T3S effector contributing to the systemic virulence of S. Typhimurium and the development of gastroenteritis. We have scrutinized the distribution of the SopD T3S signals using in silico analysis and a targeted deletion approach. We show that amino acid residues 6–10 act as the N-terminal secretion signal for Salmonella pathogenicity island 1 (SPI-1) T3S. Furthermore, we show that two putative C-terminal helical regions of SopD are essential for its secretion and also help prevent erroneous secretion through the flagellar T3S machinery. In addition, using protein–protein interaction assays, we have identified an association between SopD and the SPI-1 T3S system ATPase, InvC. These findings demonstrate that T3S of SopD involves multiple signals and protein interactions, providing important mechanistic insights into effector protein secretion.


2009 ◽  
Vol 191 (9) ◽  
pp. 3120-3131 ◽  
Author(s):  
Joanne E. Morello ◽  
Alan Collmer

ABSTRACT Pseudomonas syringae delivers virulence effector proteins into plant cells via an Hrp1 type III secretion system (T3SS). P. syringae pv. tomato DC3000 HrpP has a C-terminal, putative T3SS substrate specificity switch domain, like Yersinia YscP. A ΔhrpP DC3000 mutant could not cause disease in tomato or elicit a hypersensitive response (HR) in tobacco, but the HR could be restored by expression of HrpP in trans. Though HrpP is a relatively divergent protein in the T3SS of different P. syringae pathovars, hrpP from P. syringae pv. syringae 61 and P. syringae pv. phaseolicola 1448A restored HR elicitation and pathogenicity to DC3000 ΔhrpP. HrpP was translocated into Nicotiana benthamiana cells via the DC3000 T3SS when expressed from its native promoter, but it was not secreted in culture. N- and C-terminal truncations of HrpP were tested for their ability to be translocated and to restore HR elicitation activity to the ΔhrpP mutant. No N-terminal truncation completely abolished translocation, implying that HrpP has an atypical T3SS translocation signal. Deleting more than 20 amino acids from the C terminus abolished the ability to restore HR elicitation. HrpP fused to green fluorescent protein was no longer translocated but could restore HR elicitation activity to the ΔhrpP mutant, suggesting that translocation is not essential for the function of HrpP. No T3SS substrates were detectably secreted by DC3000 ΔhrpP except the pilin subunit HrpA, which unexpectedly was secreted poorly. HrpP may function somewhat differently than YscP because the P. syringae T3SS pilus likely varies in length due to differing plant cell walls.


2007 ◽  
Vol 189 (15) ◽  
pp. 5773-5778 ◽  
Author(s):  
Adela R. Ramos ◽  
Joanne E. Morello ◽  
Sandeep Ravindran ◽  
Wen-Ling Deng ◽  
Hsiou-Chen Huang ◽  
...  

ABSTRACT Pseudomonas syringae translocates effector proteins into plant cells via an Hrp1 type III secretion system (T3SS). T3SS components HrpB, HrpD, HrpF, and HrpP were shown to be pathway substrates and to contribute to elicitation of the plant hypersensitive response and to translocation and secretion of the model effector AvrPto1.


2001 ◽  
Vol 14 (3) ◽  
pp. 394-404 ◽  
Author(s):  
Ian R. Brown ◽  
John W. Mansfield ◽  
Suvi Taira ◽  
Elina Roine ◽  
Martin Romantschuk

The Hrp pilus, composed of HrpA subunits, is an essential component of the type III secretion system in Pseudomonas syringae. We used electron microscopy (EM) and immunocytochemistry to examine production of the pilus in vitro from P. syringae pv. tomato strain DC3000 grown under hrp-inducing conditions on EM grids. Pili, when labeled with antibodies to HrpA, developed rapidly in a nonpolar manner shortly after the detection of the hrpA transcript and extended up to 5 μm into surrounding media. Structures at the base of the pilus were clearly differentiated from the basal bodies of flagella. The HrpZ protein, also secreted via the type III system, was found by immunogold labeling to be associated with the pilus in vitro. Accumulation and secretion of HrpA and HrpZ were also examined quantitatively after the inoculation of wild-type DC3000 and hrpA and hrpZ mutants into leaves of Arabidopsis thaliana. The functional pilus crossed the plant cell wall to generate tracks of immunogold labeling for HrpA and HrpZ. Mutants that produced HrpA but did not assemble pili were nonpathogenic, did not secrete HrpA protein, and were compromised for the accumulation of HrpZ. A model is proposed in which the rapidly elongating Hrp pilus acts as a moving conveyor, facilitating transfer of effector proteins from bacteria to the plant cytoplasm across the formidable barrier of the plant cell wall.


2003 ◽  
Vol 185 (24) ◽  
pp. 7092-7102 ◽  
Author(s):  
Laurent Noël ◽  
Frank Thieme ◽  
Jana Gäbler ◽  
Daniela Büttner ◽  
Ulla Bonas

ABSTRACT Pathogenicity of the gram-negative plant pathogen Xanthomonas campestris pv. vesicatoria depends on a type III secretion (TTS) system which translocates bacterial effector proteins into the plant cell. Previous transcriptome analysis identified a genome-wide regulon of putative virulence genes that are coexpressed with the TTS system. In this study, we characterized two of these genes, xopC and xopJ. Both genes encode Xanthomonas outer proteins (Xops) that were shown to be secreted by the TTS system. In addition, type III-dependent translocation of both proteins into the plant cell was demonstrated using the AvrBs3 effector domain as a reporter. XopJ belongs to the AvrRxv/YopJ family of effector proteins from plant and animal pathogenic bacteria. By contrast, XopC does not share significant homology to proteins in the database. Sequence analysis revealed that the xopC locus contains several features that are reminiscent of pathogenicity islands. Interestingly, the xopC region is flanked by 62-bp inverted repeats that are also associated with members of the Xanthomonas avrBs3 effector family. Besides xopC, a second gene of the locus, designated hpaJ, was shown to be coexpressed with the TTS system. hpaJ encodes a protein with similarity to transglycosylases and to the Pseudomonas syringae pv. maculicola protein HopPmaG. HpaJ secretion and translocation by the X. campestris pv. vesicatoria TTS system was not detectable, which is consistent with its predicted Sec signal and a putative function as transglycosylase in the bacterial periplasm.


2004 ◽  
Vol 17 (12) ◽  
pp. 1328-1336 ◽  
Author(s):  
Li Kang ◽  
Xiaoyan Tang ◽  
Kirankumar S. Mysore

Many gram-negative bacterial pathogens rely on a type III secretion system to deliver a number of effector proteins into the host cell. Though a number of these effectors have been shown to contribute to bacterial pathogenicity, their functions remain elusive. Here we report that AvrPto, an effector known for its ability to interact with Pto and induce Pto-mediated disease resistance, inhibited the hypersensitive response (HR) induced by nonhost pathogen interactions. Pseudomonas syringae pv. tomato T1 causes an HR-like cell death on Nicotiana benthamiana. This rapid cell death was delayed significantly in plants inoculated with P. syringae pv. tomato expressing avrPto. In addition, P. syringae pv. tabaci expressing avrPto suppressed nonhost HR on tomato prf3 and ptoS lines. Transient expression of avrPto in both N. benthamiana and tomato prf3 plants also was able to suppress nonhost HR. Interestingly, AvrPto failed to suppress cell death caused by other elicitors and nonhost pathogens. AvrPto also failed to suppress cell death caused by certain gene-for-gene disease resistance interactions. Experiments with avrPto mutants revealed several residues important for the suppression effects. AvrPto mutants G2A, G99V, P146L, and a 12-amino-acid C-terminal deletion mutant partially lost the suppression ability, whereas S94P and I96T enhanced suppression of cell death in N. benthamiana. These results, together with other discoveries, demonstrated that suppression of host-programmed cell death may serve as one of the strategies bacterial pathoens use for successful invasion.


Sign in / Sign up

Export Citation Format

Share Document