scholarly journals The Core Lipopolysaccharide of Escherichia coli Is a Ligand for the Dendritic-Cell-Specific Intercellular Adhesion Molecule Nonintegrin CD209 Receptor

2005 ◽  
Vol 187 (5) ◽  
pp. 1710-1715 ◽  
Author(s):  
John Klena ◽  
Pei Zhang ◽  
Olivier Schwartz ◽  
Sheila Hull ◽  
Tie Chen

ABSTRACT The dendritic-cell-specific intercellular adhesion molecule nonintegrin (DC-SIGN) CD209 is a receptor for Escherichia coli K-12 that promotes bacterial adherence and phagocytosis. However, the ligand of E. coli for DC-SIGN has not yet been identified. In this study, we found that DC-SIGN did not mediate the phagocytosis of several pathogenic strains of E. coli, including enteropathogenic E. coli, enterohemorrhagic E. coli, enterotoxigenic E. coli, and uropathogenic E. coli, in dendritic cells or HeLa cells expressing human DC-SIGN antigen. However, we showed that an outer core lipopolysaccharide (LPS) (rough) mutant, unlike an inner core LPS (deep rough) mutant or O-antigen-expressing recombinant of E. coli K-12 was phagocytosed. These results demonstrate that the host cells expressing DC-SIGN can phagocytose E. coli in part by interacting with the complete core region of the LPS molecule. These results provide a mechanism for how O antigen acts as an antiphagocytic factor.

2014 ◽  
Vol 197 (5) ◽  
pp. 905-912 ◽  
Author(s):  
Yuriy A. Knirel ◽  
Nikolai S. Prokhorov ◽  
Alexander S. Shashkov ◽  
Olga G. Ovchinnikova ◽  
Evelina L. Zdorovenko ◽  
...  

The O polysaccharide of the lipopolysaccharide (O antigen) of Gram-negative bacteria often serves as a receptor for bacteriophages that can make the phage dependent on a given O-antigen type, thus supporting the concept of the adaptive significance of the O-antigen variability in bacteria. The O-antigen layer also modulates interactions of many bacteriophages with their hosts, limiting the access of the viruses to other cell surface receptors. Here we report variations of O-antigen synthesis and structure in an environmentalEscherichia coliisolate, 4s, obtained from horse feces, and its mutants selected for resistance to bacteriophage G7C, isolated from the same fecal sample. The 4s O antigen was found to be serologically, structurally, and genetically related to the O antigen ofE. coliO22, differing only in side-chain α-d-glucosylation in the former, mediated by agtrlocus on the chromosome. Spontaneous mutations ofE. coli4s occurring with an unusually high frequency affected either O-antigen synthesis or O-acetylation due to the inactivation of the gene encoding the putative glycosyltransferase WclH or the putative acetyltransferase WclK, respectively, by the insertion of IS1-like elements. These mutations induced resistance to bacteriophage G7C and also modified interactions ofE. coli4s with several other bacteriophages conferring either resistance or sensitivity to the host. These findings suggest that O-antigen synthesis and O-acetylation can both ensure the specific recognition of the O-antigen receptor following infection by some phages and provide protection of the host cells against attack by other phages.


2006 ◽  
Vol 55 (9) ◽  
pp. 1265-1270 ◽  
Author(s):  
H. Zhu ◽  
C. A. Hart ◽  
D. Sales ◽  
N. B. Roberts

The susceptibility of Escherichia coli and Helicobacter pylori to pH and the effect of pepsin-mediated proteolysis were investigated. This was to establish the relative importance of their bacterial killing properties in gastric juice. Solutions in the pH range 1.5–7.4 with or without pig pepsin A were used, together with seven gastric juice samples obtained from patients undergoing routine gastric collection. Escherichia coli C690 (a capsulate strain), E. coli K-12 (a rough mutant) and Helicobacter pylori E5 were selected as the test organisms. Suspensions of bacteria (1×106 E. coli ml−1 and 1×108 H. pylori ml−1) were pre-incubated with test solutions at 37 °C for up to 2 h, and then cultured to establish the effect on subsequent growth. Survival of bacteria was diminished at pHs of less than 3.5, whereas killing required a pH of less than 2.5. Pre-incubation with pig pepsin at 0.5, 1.0 and 2.0 mg ml−1 at pH 3.5 reduced viable counts by 100 % for E. coli 690 and E. coli K-12 after 100 min incubation. With H. pylori, the viable counts decreased to 50 % of the control after 20 min incubation in 1 mg pepsin ml−1 at pH 2.5, 3.0 and 3.5. The gastric juices showed bactericidal activity at pH 3.5, and the rate of killing was juice dependent, with complete death of E. coli 690 occurring between 5 and 40 min post-incubation. Thus, killing of E. coli and H. pylori occurs optimally at pHs of less than 2.5. At pH 3.5, little effect is observed, whereas addition of pepsin alone or in gastric juice causes a marked increase in bacterial susceptibility, suggesting an important role for proteolysis in the killing of bacteria.


Sign in / Sign up

Export Citation Format

Share Document