scholarly journals Novel Clostridium botulinum Toxin Gene Arrangement with Subtype A5 and Partial Subtype B3 Botulinum Neurotoxin Genes

2009 ◽  
Vol 47 (7) ◽  
pp. 2349-2350 ◽  
Author(s):  
N. Dover ◽  
J. R. Barash ◽  
S. S. Arnon
2010 ◽  
Vol 77 (5) ◽  
pp. 1904-1906 ◽  
Author(s):  
N. Dover ◽  
J. R. Barash ◽  
K. K. Hill ◽  
J. C. Detter ◽  
S. S. Arnon

ABSTRACTWe sequenced for the first time the complete neurotoxin gene cluster of a nonproteolyticClostridium botulinumtype F. The neurotoxin gene cluster contained a novel gene arrangement that, compared to otherC. botulinumneurotoxin gene clusters, lacked the regulatorybotRgene and contained an intergeniciselement between itsorfX2andorfX3genes.


2005 ◽  
Vol 68 (7) ◽  
pp. 1477-1483 ◽  
Author(s):  
M. GAUTHIER ◽  
B. CADIEUX ◽  
J. W. AUSTIN ◽  
B. W. BLAIS

A simple cloth-based hybridization array system was developed for the characterization of Clostridium botulinum isolates based on the botulinum neurotoxin serotype. Bacterial isolates were subjected to a multiplex PCR incorporating digoxigenindUTP and primers targeting the four botulinum neurotoxin gene serotypes (A, B, E, and F) predominantly involved in human illness, followed by hybridization of the amplicons with an array of toxin gene-specific oligonucleotide probes immobilized on polyester cloth and subsequent immunoenzymatic assay of the bound digoxigenin label. This system provided sensitive and specific detection of the different botulinum neurotoxin gene markers in a variety of C. botulinum strains, exhibiting the expected patterns of reactivity with a panel of target and nontarget organisms.


2019 ◽  
Vol 16 (1) ◽  
pp. 113-119 ◽  
Author(s):  
Mohammad Aminianfar ◽  
Siavash Parvardeh ◽  
Mohsen Soleimani

Background: Clostridium botulinum causes botulism, a serious paralytic illness that results from the ingestion of a botulinum toxin. Because silver nanoparticle products exhibit strong antimicrobial activity, applications for silver nanoparticles in healthcare have expanded. Therefore, the objective of the current study was to assess a therapeutic strategy for the treatment of botulism toxicity using silver nanoparticles. Methods: A preliminary test was conducted using doses that produce illness in laboratory animals to determine the absolute lethal dose (LD100) of botulinum toxin type A (BoNT/A) in mice. Next, the test animals were divided into six groups containing six mice each. Groups I, II and III were the negative control (botulinum toxin only), positive control-1 (nano-silver only) and positive control-2 (no treatment), respectively. The remaining groups were allocated to the toxin that was supplemented with three nano-silver treatments. Results: The mortality rates of mice caused by BoNT/A significantly reduced in the treatment groups with different doses and injection intervals of nano-silver when compared to the negative control group. BoNT/A toxicity induced by intraperitoneal injection of the toxin of Clostridium botulinum causes rapid death while when coupled with nano-osilver results in delayed death in mice. Conclusion: These results, while open to future improvement, represent a preliminary step towards the satisfactory control of BoNT/A with the use of silver nanoparticles for human protection against this bioterrorism threat. Further study in this area can elucidate the underlying mechanism for detoxifying BoNT/A by silver nanoparticles.


2007 ◽  
Vol 12 (3) ◽  
pp. 370-377 ◽  
Author(s):  
Andrea M. Stahl ◽  
Gordon Ruthel ◽  
Edna Torres-Melendez ◽  
Tara A. Kenny ◽  
Rekha G. Panchal ◽  
...  

Botulinum toxin is an exceedingly potent inhibitor of neurotransmission across the neuromuscular junction, causing flaccid paralysis and death. The potential for misuse of this deadly poison as a bioweapon has added a greater urgency to the search for effective therapeutics. The development of sensitive and efficient cell-based assays for the evaluation of toxin antagonists is crucial to the rapid and successful identification of therapeutic compounds. The authors evaluated the sensitivity of primary cultures from 4 distinct regions of the embryonic chick nervous system to botulinum neurotoxin A (BoNT/A) cleavage of synaptosomal-associated protein of 25 kD (SNAP-25). Although differences in sensitivity were apparent, SNAP-25 cleavage was detectable in neuronal cells from each of the 4 regions within 3 h at BoNT/A concentrations of 1 nM or lower. Co-incubation of chick neurons with BoNT/A and toxin-neutralizing antibodies inhibited SNAP-25 cleavage, demonstrating the utility of these cultures for the assay of BoNT/A antagonists. ( Journal of Biomolecular Screening 2007:370-377)


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Changjiao Gan ◽  
Wenbo Luo ◽  
Yunzhou Yu ◽  
Zhouguang Jiao ◽  
Sha Li ◽  
...  

AbstractBotulinum neurotoxin (BoNT), produced by Clostridium botulinum, is generally known to be the most poisonous of all biological toxins. In this study, we evaluate the protection conferred by intratracheal (i.t.) inoculation immunization with recombinant Hc subunit (AHc) vaccines against aerosolized BoNT/A intoxication. Three AHc vaccine formulations, i.e., conventional liquid, dry powder produced by spray freeze drying, and AHc dry powder reconstituted in water are prepared, and mice are immunized via i.t. inoculation or subcutaneous (s.c.) injection. Compared with s.c.-AHc-immunized mice, i.t.-AHc-immunized mice exhibit a slightly stronger protection against a challenge with 30,000× LD50 aerosolized BoNT/A. Of note, only i.t.-AHc induces a significantly higher level of toxin-neutralizing mucosal secretory IgA (SIgA) production in the bronchoalveolar lavage of mice. In conclusion, our study demonstrates that the immune protection conferred by the three formulations of AHc is comparable, while i.t. immunization of AHc is superior to s.c. immunization against aerosolized BoNT/A intoxication.


Toxicon ◽  
2021 ◽  
Vol 190 ◽  
pp. S42
Author(s):  
Sara Košenina ◽  
Geoffrey Masuyer ◽  
Sicai Zhang ◽  
Min Dong ◽  
Pål Stenmark

Toxins ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 19 ◽  
Author(s):  
Maria B. Nowakowska ◽  
François P. Douillard ◽  
Miia Lindström

The botulinum neurotoxin (BoNT) has been extensively researched over the years in regard to its structure, mode of action, and applications. Nevertheless, the biological roles of four proteins encoded from a number of BoNT gene clusters, i.e., OrfX1-3 and P47, are unknown. Here, we investigated the diversity of orfX-p47 gene clusters using in silico analytical tools. We show that the orfX-p47 cluster was not only present in the genomes of BoNT-producing bacteria but also in a substantially wider range of bacterial species across the bacterial phylogenetic tree. Remarkably, the orfX-p47 cluster was consistently located in proximity to genes coding for various toxins, suggesting that OrfX1-3 and P47 may have a conserved function related to toxinogenesis and/or pathogenesis, regardless of the toxin produced by the bacterium. Our work also led to the identification of a putative novel BoNT-like toxin gene cluster in a Bacillus isolate. This gene cluster shares striking similarities to the BoNT cluster, encoding a bont/ntnh-like gene and orfX-p47, but also differs from it markedly, displaying additional genes putatively encoding the components of a polymorphic ABC toxin complex. These findings provide novel insights into the biological roles of OrfX1, OrfX2, OrfX3, and P47 in toxinogenesis and pathogenesis of BoNT-producing and non-producing bacteria.


2014 ◽  
Vol 80 (7) ◽  
pp. 2125-2132 ◽  
Author(s):  
Narjol Gonzalez-Escalona ◽  
Ruth Timme ◽  
Brian H. Raphael ◽  
Donald Zink ◽  
Shashi K. Sharma

ABSTRACTClostridium botulinumis a genetically diverse Gram-positive bacterium producing extremely potent neurotoxins (botulinum neurotoxins A through G [BoNT/A-G]). The complete genome sequences of three strains harboring only the BoNT/A1 nucleotide sequence are publicly available. Although these strains contain a toxin cluster (HA+OrfX−) associated with hemagglutinin genes, little is known about the genomes of subtype A1 strains (termed HA−OrfX+) that lack hemagglutinin genes in the toxin gene cluster. We sequenced the genomes of three BoNT/A1-producingC. botulinumstrains: two strains with the HA+OrfX−cluster (69A and 32A) and one strain with the HA−OrfX+cluster (CDC297). Whole-genome phylogenic single-nucleotide-polymorphism (SNP) analysis of these strains along with other publicly availableC. botulinumgroup I strains revealed five distinct lineages. Strains 69A and 32A clustered with theC. botulinumtype A1 Hall group, and strain CDC297 clustered with theC. botulinumtype Ba4 strain 657. This study reports the use of whole-genome SNP sequence analysis for discrimination ofC. botulinumgroup I strains and demonstrates the utility of this analysis in quickly differentiatingC. botulinumstrains harboring identical toxin gene subtypes. This analysis further supports previous work showing that strains CDC297 and 657 likely evolved from a common ancestor and independently acquired separate BoNT/A1 toxin gene clusters at distinct genomic locations.


2008 ◽  
Vol 74 (9) ◽  
pp. 2778-2786 ◽  
Author(s):  
Mark J. Jacobson ◽  
Guangyun Lin ◽  
Brian Raphael ◽  
Joanne Andreadis ◽  
Eric A. Johnson

ABSTRACT Neurotoxin cluster gene sequences and arrangements were elucidated for strains of Clostridium botulinum encoding botulinum neurotoxin (BoNT) subtypes A3, A4, and a unique A1-producing strain (HA− Orfx+ A1). These sequences were compared to the known neurotoxin cluster sequences of C. botulinum strains that produce BoNT/A1 and BoNT/A2 and possess either a hemagglutinin (HA) or an Orfx cluster, respectively. The A3 and HA− Orfx+ A1 strains demonstrated a neurotoxin cluster arrangement similar to that found in A2. The A4 strain analyzed possessed two sets of neurotoxin clusters that were similar to what has been found in the A(B) strains: an HA cluster associated with the BoNT/B gene and an Orfx cluster associated with the BoNT/A4 gene. The nucleotide and amino acid sequences of the neurotoxin cluster-specific genes were determined for each neurotoxin cluster and compared among strains. Additionally, the ntnh gene of each strain was compared on both the nucleotide and amino acid levels. The degree of similarity of the sequences of the ntnh genes and corresponding amino acid sequences correlated with the neurotoxin cluster type to which the ntnh gene was assigned.


Sign in / Sign up

Export Citation Format

Share Document