scholarly journals Evaluation of an Immunochromatographic Assay for Rapid Detection of Penicillin-Binding Protein 2a in Human and Animal Staphylococcus intermedius Group, Staphylococcus lugdunensis, and Staphylococcus schleiferi Clinical Isolates

2015 ◽  
Vol 54 (3) ◽  
pp. 745-748 ◽  
Author(s):  
A. R. Arnold ◽  
C.-A. D. Burnham ◽  
B. A. Ford ◽  
S. D. Lawhon ◽  
S. K. McAllister ◽  
...  

The performance of a rapid penicillin-binding protein 2a (PBP2a) detection assay, the Alere PBP2a culture colony test, was evaluated for identification of PBP2a-mediated beta-lactam resistance in human and animal clinical isolates ofStaphylococcus intermediusgroup,Staphylococcus lugdunensis, andStaphylococcus schleiferi. The assay was sensitive and specific, with all PBP2a-negative and PBP2a-positive strains testing negative and positive, respectively.

2017 ◽  
Vol 61 (5) ◽  
Author(s):  
Mark van der Linden ◽  
Julia Otten ◽  
Carina Bergmann ◽  
Cristina Latorre ◽  
Josefina Liñares ◽  
...  

ABSTRACT The identification of commensal streptococci species is an everlasting problem due to their ability to genetically transform. A new challenge in this respect is the recent description of Streptococcus pseudopneumoniae as a new species, which was distinguished from closely related pathogenic S. pneumoniae and commensal S. mitis by a variety of physiological and molecular biological tests. Forty-one atypical S. pneumoniae isolates have been collected at the German National Reference Center for Streptococci (GNRCS). Multilocus sequence typing (MLST) confirmed 35 isolates as the species S. pseudopneumoniae. A comparison with the pbp2x sequences from 120 commensal streptococci isolated from different continents revealed that pbp2x is distinct among penicillin-susceptible S. pseudopneumoniae isolates. Four penicillin-binding protein x (PBPx) alleles of penicillin-sensitive S. mitis account for most of the diverse sequence blocks in resistant S. pseudopneumoniae, S. pneumoniae, and S. mitis, and S. infantis and S. oralis sequences were found in S. pneumoniae from Japan. PBP2x genes of the family of mosaic genes related to pbp2x in the S. pneumoniae clone Spain23F-1 were observed in S. oralis and S. infantis as well, confirming its global distribution. Thirty-eight sites were altered within the PBP2x transpeptidase domains of penicillin-resistant strains, excluding another 37 sites present in the reference genes of sensitive strains. Specific mutational patterns were detected depending on the parental sequence blocks, in agreement with distinct mutational pathways during the development of beta-lactam resistance. The majority of the mutations clustered around the active site, whereas others are likely to affect stability or interactions with the C-terminal domain or partner proteins.


2021 ◽  
Vol 7 (9) ◽  
Author(s):  
Akuzike Kalizang'oma ◽  
Chrispin Chaguza ◽  
Andrea Gori ◽  
Charlotte Davison ◽  
Sandra Beleza ◽  
...  

Streptococcus pneumoniae is an important global pathogen that causes bacterial pneumonia, sepsis and meningitis. Beta-lactam antibiotics are the first-line treatment for pneumococcal disease, however, their effectiveness is hampered by beta-lactam resistance facilitated by horizontal genetic transfer (HGT) with closely related species. Although interspecies HGT is known to occur among the species of the genus Streptococcus , the rates and effects of HGT between Streptococcus pneumoniae and its close relatives involving the penicillin binding protein (pbp) genes remain poorly understood. Here we applied the fastGEAR tool to investigate interspecies HGT in pbp genes using a global collection of whole-genome sequences of Streptococcus mitis , Streptococcus oralis and S. pneumoniae . With these data, we established that pneumococcal serotypes 6A, 13, 14, 16F, 19A, 19F, 23F and 35B were the highest-ranking serotypes with acquired pbp fragments. S. mitis was a more frequent pneumococcal donor of pbp fragments and a source of higher pbp nucleotide diversity when compared with S. oralis . Pneumococci that acquired pbp fragments were associated with a higher minimum inhibitory concentration (MIC) for penicillin compared with pneumococci without acquired fragments. Together these data indicate that S. mitis contributes to reduced β-lactam susceptibility among commonly carried pneumococcal serotypes that are associated with long carriage duration and high recombination frequencies. As pneumococcal vaccine programmes mature, placing increasing pressure on the pneumococcal population structure, it will be important to monitor the influence of antimicrobial resistance HGT from commensal streptococci such as S. mitis .


mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Katie N. Kang ◽  
Misha I. Kazi ◽  
Jacob Biboy ◽  
Joe Gray ◽  
Hannah Bovermann ◽  
...  

ABSTRACT Despite dogma suggesting that lipopolysaccharide/lipooligosaccharide (LOS) was essential for viability of Gram-negative bacteria, several Acinetobacter baumannii clinical isolates produced LOS− colonies after colistin selection. Inactivation of the conserved class A penicillin-binding protein, PBP1A, was a compensatory mutation that supported isolation of LOS− A. baumannii, but the impact of PBP1A mutation was not characterized. Here, we show that the absence of PBP1A causes septation defects and that these, together with ld-transpeptidase activity, support isolation of LOS− A. baumannii. PBP1A contributes to proper cell division in A. baumannii, and its absence induced cell chaining. Only isolates producing three or more septa supported selection of colistin-resistant LOS− A. baumannii. PBP1A was enriched at the midcell, where the divisome complex facilitates daughter cell formation, and its localization was dependent on glycosyltransferase activity. Transposon mutagenesis showed that genes encoding two putative ld-transpeptidases (LdtJ and LdtK) became essential in the PBP1A mutant. Both LdtJ and LdtK were required for selection of LOS− A. baumannii, but each had distinct enzymatic activities in the cell. Together, these findings demonstrate that defects in PBP1A glycosyltransferase activity and ld-transpeptidase activity remodel the cell envelope to support selection of colistin-resistant LOS− A. baumannii. IMPORTANCE The increasing prevalence of antibiotic treatment failure associated with Gram-negative bacterial infections highlights an urgent need to develop new alternative therapeutic strategies. The last-line antimicrobial colistin (polymyxin E) targets the ubiquitous outer membrane lipopolysaccharide (LPS)/LOS membrane anchor, lipid A, which is essential for viability of most diderms. However, several LOS− Acinetobacter baumannii clinical isolates were recovered after colistin selection, suggesting a conserved resistance mechanism. Here, we characterized a role for penicillin-binding protein 1A in A. baumannii septation and intrinsic β-lactam susceptibility. We also showed that defects in PBP1A glycosyltransferase activity and ld-transpeptidase activity support isolation of colistin-resistant LOS− A. baumannii.


2002 ◽  
Vol 46 (12) ◽  
pp. 3744-3749 ◽  
Author(s):  
Satoshi Ameyama ◽  
Shoichi Onodera ◽  
Masahiro Takahata ◽  
Shinzaburo Minami ◽  
Nobuko Maki ◽  
...  

ABSTRACT Neisseria gonorrhoeae strains with reduced susceptibility to cefixime (MICs, 0.25 to 0.5 μg/ml) were isolated from male urethritis patients in Tokyo, Japan, in 2000 and 2001. The resistance to cephems including cefixime and penicillin was transferred to a susceptible recipient, N. gonorrhoeae ATCC 19424, by transformation of the penicillin-binding protein 2 gene (penA) that had been amplified by PCR from a strain with reduced susceptibility to cefixime (MIC, 0.5 μg/ml). The sequences of penA in the strains with reduced susceptibilities to cefixime were different from those of other susceptible isolates and did not correspond to the reported N. gonorrhoeae penA gene sequences. Some regions in the transpeptidase-encoding domain in this penA gene were similar to those in the penA genes of Neisseria perflava (N. sicca), Neisseria cinerea, Neisseria flavescens, and Neisseria meningitidis. These results showed that a mosaic-like structure in the penA gene conferred reductions in the levels of susceptibility of N. gonorrhoeae to cephems and penicillin in a manner similar to that found for N. meningitidis and Streptococcus pneumoniae.


2006 ◽  
Vol 50 (11) ◽  
pp. 3638-3645 ◽  
Author(s):  
Sho Takahata ◽  
Nami Senju ◽  
Yumi Osaki ◽  
Takuji Yoshida ◽  
Takashi Ida

ABSTRACT The molecular mechanisms of reduced susceptibility to cefixime in clinical isolates of Neisseria gonorrhoeae, particularly amino acid substitutions in mosaic penicillin-binding protein 2 (PBP2), were examined. The complete sequence of ponA, penA, and por genes, encoding, respectively, PBP1, PBP2, and porin, were determined for 58 strains isolated in 2002 from Japan. Replacement of leucine 421 by proline in PBP1 and the mosaic-like structure of PBP2 were detected in 48 strains (82.8%) and 28 strains (48.3%), respectively. The presence of mosaic PBP2 was the main cause of the elevated cefixime MIC (4- to 64-fold). In order to identify the mutations responsible for the reduced susceptibility to cefixime in isolates with mosaic PBP2, penA genes with various mutations were transferred to a susceptible strain by genetic transformation. The susceptibility of partial recombinants and site-directed mutants revealed that the replacement of glycine 545 by serine (G545S) was the primary mutation, which led to a two- to fourfold increase in resistance to cephems. Replacement of isoleucine 312 by methionine (I312M) and valine 316 by threonine (V316T), in the presence of the G545S mutation, reduced susceptibility to cefixime, ceftibuten, and cefpodoxime by an additional fourfold. Therefore, three mutations (G545S, I312M, and V316T) in mosaic PBP2 were identified as the amino acid substitutions responsible for reduced susceptibility to cefixime in N. gonorrhoeae.


2013 ◽  
Vol 57 (10) ◽  
pp. 5005-5012 ◽  
Author(s):  
Andrew D. Berti ◽  
George Sakoulas ◽  
Victor Nizet ◽  
Ryan Tewhey ◽  
Warren E. Rose

ABSTRACTThe activity of daptomycin (DAP) against methicillin-resistantStaphylococcus aureus(MRSA) is enhanced in the presence of subinhibitory concentrations of antistaphylococcal β-lactam antibiotics by an undefined mechanism. Given the variability in the penicillin-binding protein (PBP)-binding profiles of different β-lactam antibiotics, the purpose of this study was to examine the relative enhancement of DAP activity against MRSA by different β-lactam antibiotics to determine if a specific PBP-binding profile is associated with the ability to enhance the anti-MRSA activity of DAP. We determined that both broad- and narrow-spectrum β-lactam antibiotics known to exhibit PBP1 binding demonstrated potent enhancement of DAP anti-MRSA activity, whereas β-lactam antibiotics with minimal PBP1 binding (cefoxitin, ceftriaxone, cefaclor, and cefotaxime) were less effective. We suspect that PBP1 disruption by β-lactam antibiotics affects pathways of cell division inS. aureusthat may be a compensatory response to DAP membrane insertion, resulting in DAP hypersusceptibility.


2014 ◽  
Vol 58 (7) ◽  
pp. 3934-3941 ◽  
Author(s):  
Hansjürg Engel ◽  
Moana Mika ◽  
Dalia Denapaite ◽  
Regine Hakenbeck ◽  
Kathrin Mühlemann ◽  
...  

ABSTRACTHeteroresistance to penicillin inStreptococcus pneumoniaeis the ability of subpopulations to grow at a higher antibiotic concentration than expected from the MIC. This may render conventional resistance testing unreliable and lead to therapeutic failure. We investigated the role of the primary β-lactam resistance determinants, penicillin-binding protein 2b (PBP2b) and PBP2x, and the secondary resistance determinant PBP1a in heteroresistance to penicillin. Transformants containing PBP genes from the heteroresistant strain Spain23F2349in the nonheteroresistant strain R6 background were tested for heteroresistance by population analysis profiling (PAP). We found thatpbp2x, but notpbp2borpbp1aalone, conferred heteroresistance to R6. However, a change ofpbp2xexpression was not observed, and therefore, expression does not correlate with an increased proportion of resistant subpopulations. In addition, the influence of the CiaRH system, mediating PBP-independent β-lactam resistance, was assessed by PAP onciaRdisruption mutants but revealed no heteroresistant phenotype. We also showed that the highly resistant subpopulations (HOM*) of transformants containing low-affinitypbp2xundergo an increase in resistance upon selection on penicillin plates that partially reverts after passaging on selection-free medium. Shotgun proteomic analysis showed an upregulation of phosphate ABC transporter subunit proteins encoded bypstS,phoU,pstB, andpstCin these highly resistant subpopulations. In conclusion, the presence of low-affinitypbp2xenables certain pneumococcal colonies to survive in the presence of β-lactams. Upregulation of phosphate ABC transporter genes may represent a reversible adaptation to antibiotic stress.


2018 ◽  
Vol 56 (9) ◽  
Author(s):  
Adam L. Bailey ◽  
Tom Armstrong ◽  
Hari-Prakash Dwivedi ◽  
Gerald A. Denys ◽  
Janet Hindler ◽  
...  

ABSTRACT Ceftolozane-tazobactam (C/T) is a novel beta-lactam–beta-lactamase inhibitor combination antibiotic approved by the U.S. Food and Drug Administration in 2014 for the treatment of complicated intra-abdominal infections (in combination with metronidazole) and complicated urinary tract infections. In this study, we evaluated the performance of the C/T Etest, a gradient diffusion method. C/T Etest was compared to broth microdilution (BMD) for 51 Enterobacteriaceae challenge isolates and 39 Pseudomonas aeruginosa challenge isolates at three clinical sites. Essential agreement (EA) between the methods ranged from 47 to 49/51 (92.2 to 96.1%) for the Enterobacteriaceae, and categorical agreement (CA) ranged from 49 to 51/51 (96.1 to 100.0%). EA and CA for P. aeruginosa were 100% at all sites. The C/T Etest was also compared to BMD for susceptibility testing on 966 clinical isolates (793 Enterobacteriaceae, including 167 Klebsiella pneumoniae and 159 Escherichia coli isolates, in addition to 173 P. aeruginosa isolates) collected at four clinical sites. EA between Etest and BMD was 96.9% for Enterobacteriaceae isolates and 98.8% for P. aeruginosa isolates. Within the Enterobacteriaceae, isolates from each species examined had >96% CA. For the clinical isolates, no very major errors were identified but two major errors were found (one for K. pneumoniae and one for Providencia rettgeri). By BMD, 47.0% of Enterobacteriaceae and 46.2% of P. aeruginosa challenge strains were nonsusceptible to C/T by CLSI breakpoint criteria; 8.2% of clinical Enterobacteriaceae isolates and 12.1% of clinical P. aeruginosa isolates were nonsusceptible to C/T by CLSI breakpoint criteria. In conclusion, Etest is accurate and reproducible for C/T susceptibility testing of Enterobacteriaceae and P. aeruginosa.


2020 ◽  
Vol 64 (5) ◽  
Author(s):  
Vijay Kumar ◽  
Christie Tang ◽  
Christopher R. Bethel ◽  
Krisztina M. Papp-Wallace ◽  
Jacob Wyatt ◽  
...  

ABSTRACT Ceftobiprole is an advanced-generation broad-spectrum cephalosporin antibiotic with potent and rapid bactericidal activity against Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus, as well as susceptible Gram-negative pathogens, including Pseudomonas sp. pathogens. In the case of Pseudomonas aeruginosa, ceftobiprole acts by inhibiting P. aeruginosa penicillin-binding protein 3 (PBP3). Structural studies were pursued to elucidate the molecular details of this PBP inhibition. The crystal structure of the His-tagged PBP3-ceftobiprole complex revealed a covalent bond between the ligand and the catalytic residue S294. Ceftobiprole binding leads to large active site changes near binding sites for the pyrrolidinone and pyrrolidine rings. The S528 to L536 region adopts a conformation previously not observed in PBP3, including partial unwinding of the α11 helix. These molecular insights can lead to a deeper understanding of β-lactam-PBP interactions that result in major changes in protein structure, as well as suggesting how to fine-tune current inhibitors and to develop novel inhibitors of this PBP.


Sign in / Sign up

Export Citation Format

Share Document