scholarly journals Comparison of Multilocus Sequence Typing and the Xpert C. difficile/Epi Assay for Identification of Clostridium difficile 027/NAP1/BI

2015 ◽  
Vol 54 (3) ◽  
pp. 775-778 ◽  
Author(s):  
Tracy McMillen ◽  
Mini Kamboj ◽  
N. Esther Babady

Clostridium difficile027/NAP1/BI is the most commonC. difficilestrain in the United States. The XpertC. difficile/Epi assay allows rapid, presumptive identification ofC. difficileNAP1. We compared XpertC. difficile/Epi to multilocus sequence typing for identification ofC. difficileNAP1 and found “very good” agreement at 97.9% (κ = 0.86; 95% confidence interval, 0.80 to 0.91).

mSphere ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Jhansi L. Leslie ◽  
Kimberly C. Vendrov ◽  
Matthew L. Jenior ◽  
Vincent B. Young

ABSTRACTClostridium(Clostridioides)difficile, a Gram-positive, anaerobic bacterium, is the leading single cause of nosocomial infections in the United States. A major risk factor forClostridium difficileinfection (CDI) is prior exposure to antibiotics, as they increase susceptibility to CDI by altering the membership of the microbial community enabling colonization. The importance of the gut microbiota in providing protection from CDI is underscored by the reported 80 to 90% success rate of fecal microbial transplants in treating recurrent infections. Adaptive immunity, specifically humoral immunity, is also sufficient to protect from both acute and recurrent CDI. However, the role of the adaptive immune system in mediating clearance ofC. difficilehas yet to be resolved. Using murine models of CDI, we found that adaptive immunity is dispensable for clearance ofC. difficile. However, random forest analysis using only two members of the resident bacterial community correctly identified animals that would go on to clear the infection with 66.7% accuracy. These findings indicate that the indigenous gut microbiota independent of adaptive immunity facilitates clearance ofC. difficilefrom the murine gastrointestinal tract.IMPORTANCEClostridium difficileinfection is a major cause of morbidity and mortality in hospitalized patients in the United States. Currently, the role of the adaptive immune response in modulating levels ofC. difficilecolonization is unresolved. This work suggests that the indigenous gut microbiota is a main factor that promotes clearance ofC. difficilefrom the GI tract. Our results show that clearance ofC. difficilecan occur without contributions from the adaptive immune response. This study also has implications for the design of preclinical studies testing the efficacy of vaccines on clearance of bacterial pathogens, as inherent differences in the baseline community structure of animals may bias findings.


mSphere ◽  
2017 ◽  
Vol 2 (5) ◽  
Author(s):  
John W. Ribis ◽  
Priyanka Ravichandran ◽  
Emily E. Putnam ◽  
Keyan Pishdadian ◽  
Aimee Shen

ABSTRACT The spore-forming obligate anaerobe Clostridium difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. When C. difficile spores are ingested by susceptible individuals, they germinate within the gut and transform into vegetative, toxin-secreting cells. During infection, C. difficile must also induce spore formation to survive exit from the host. Since spore formation is essential for transmission, understanding the basic mechanisms underlying sporulation in C. difficile could inform the development of therapeutic strategies targeting spores. In this study, we determine the requirement of the C. difficile homolog of SpoVM, a protein that is essential for spore formation in Bacillus subtilis due to its regulation of coat and cortex formation. We observed that SpoVM plays a minor role in C. difficile spore formation, in contrast with B. subtilis, indicating that this protein would not be a good target for inhibiting spore formation. The spore-forming bacterial pathogen Clostridium difficile is a leading cause of health care-associated infections in the United States. In order for this obligate anaerobe to transmit infection, it must form metabolically dormant spores prior to exiting the host. A key step during this process is the assembly of a protective, multilayered proteinaceous coat around the spore. Coat assembly depends on coat morphogenetic proteins recruiting distinct subsets of coat proteins to the developing spore. While 10 coat morphogenetic proteins have been identified in Bacillus subtilis, only two of these morphogenetic proteins have homologs in the Clostridia: SpoIVA and SpoVM. C. difficile SpoIVA is critical for proper coat assembly and functional spore formation, but the requirement for SpoVM during this process was unknown. Here, we show that SpoVM is largely dispensable for C. difficile spore formation, in contrast with B. subtilis. Loss of C. difficile SpoVM resulted in modest decreases (~3-fold) in heat- and chloroform-resistant spore formation, while morphological defects such as coat detachment from the forespore and abnormal cortex thickness were observed in ~30% of spoVM mutant cells. Biochemical analyses revealed that C. difficile SpoIVA and SpoVM directly interact, similarly to their B. subtilis counterparts. However, in contrast with B. subtilis, C. difficile SpoVM was not essential for SpoIVA to encase the forespore. Since C. difficile coat morphogenesis requires SpoIVA-interacting protein L (SipL), which is conserved exclusively in the Clostridia, but not the more broadly conserved SpoVM, our results reveal another key difference between C. difficile and B. subtilis spore assembly pathways. IMPORTANCE The spore-forming obligate anaerobe Clostridium difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. When C. difficile spores are ingested by susceptible individuals, they germinate within the gut and transform into vegetative, toxin-secreting cells. During infection, C. difficile must also induce spore formation to survive exit from the host. Since spore formation is essential for transmission, understanding the basic mechanisms underlying sporulation in C. difficile could inform the development of therapeutic strategies targeting spores. In this study, we determine the requirement of the C. difficile homolog of SpoVM, a protein that is essential for spore formation in Bacillus subtilis due to its regulation of coat and cortex formation. We observed that SpoVM plays a minor role in C. difficile spore formation, in contrast with B. subtilis, indicating that this protein would not be a good target for inhibiting spore formation.


2014 ◽  
Vol 58 (7) ◽  
pp. 4214-4218 ◽  
Author(s):  
Isabella A. Tickler ◽  
Richard V. Goering ◽  
Joseph D. Whitmore ◽  
Ashley N. W. Lynn ◽  
David H. Persing ◽  
...  

ABSTRACTWe determined the PCR ribotypes and antimicrobial susceptibility patterns of 508 toxigenicClostridium difficileisolates collected between 2011 and 2013 from 32 U.S. hospitals. Of the 29 PCR ribotypes identified, the 027 strain type was the most common (28.1%), although the rates varied by geographic region. Ribotype 014/020 isolates appear to be emerging. Clindamycin and moxifloxacin resistances (36.8% and 35.8%, respectively) were the most frequent resistance phenotypes observed. Reduced susceptibility to vancomycin was observed in 39.1% of 027 isolates.


2020 ◽  
pp. 073346482097760
Author(s):  
Manka Nkimbeng ◽  
Yvonne Commodore-Mensah ◽  
Jacqueline L. Angel ◽  
Karen Bandeen-Roche ◽  
Roland J. Thorpe ◽  
...  

Acculturation and racial discrimination have been independently associated with physical function limitations in immigrant and United States (U.S.)-born populations. This study examined the relationships among acculturation, racial discrimination, and physical function limitations in N = 165 African immigrant older adults using multiple linear regression. The mean age was 62 years ( SD = 8 years), and 61% were female. Older adults who resided in the United States for 10 years or more had more physical function limitations compared with those who resided here for less than 10 years ( b = −2.62, 95% confidence interval [CI] = [–5.01, –0.23]). Compared to lower discrimination, those with high discrimination had more physical function limitations ( b = −2.51, 95% CI = [–4.91, –0.17]), but this was no longer significant after controlling for length of residence and acculturation strategy. Residing in the United States for more than 10 years is associated with poorer physical function. Longitudinal studies with large, diverse samples of African immigrants are needed to confirm these associations.


2020 ◽  
Vol 15 (2) ◽  
pp. 121-126
Author(s):  
Takisha Durm

PurposeThe Girl Who Buried Her Dreams in a Can, written by Dr Tererai, profiles a cultural, yet global experience of the power of believing in one's dream. Through this study of the similarities and differences of how children in the United States and abroad live and dream of a better life, this lesson seeks to enhance students' understandings of the power and authority they possess to effect change not only within their own lives but also in the lives of countless others in world. After reading the text, students will work to create vision boards illustrating their plans to effect change within their homes, schools, communities, states or countries. They will present their plans to their peers. To culminate the lesson, the students will bury their dreams in can and collectively decide on a future date to revisit the can to determine how far they have progressed in accomplishing their goals.Design/methodology/approachThis is an elementary grades 3–6 lesson plan. There was no research design/methodology/approach included.FindingsAs this is a lesson plan and no actual research was represented, there are no findings.Originality/valueThis is an original lesson plan completed by the first author Takisha Durm.


mBio ◽  
2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Carrie A. Cowardin ◽  
Sarah A. Kuehne ◽  
Erica L. Buonomo ◽  
Chelsea S. Marie ◽  
Nigel P. Minton ◽  
...  

ABSTRACT  Clostridium difficileis the most common hospital-acquired pathogen, causing antibiotic-associated diarrhea in over 250,000 patients annually in the United States. Disease is primarily mediated by toxins A and B, which induce potent proinflammatory signaling in host cells and can activate an ASC-containing inflammasome. Recent findings suggest that the intensity of the host response to infection correlates with disease severity. Our lab has identified the proinflammatory cytokine interleukin-23 (IL-23) as a pathogenic mediator during C. difficile infection (CDI). The mechanisms by which C. difficile induces IL-23, however, are not well understood, and the role of toxins A and B in this process is unclear. Here, we show that toxins A and B alone are not sufficient for IL-23 production but synergistically increase the amount of IL-23 produced in response to MyD88-dependent danger signals, including pathogen-associated molecular patterns (PAMPs) and host-derived damage associated molecular patterns (DAMPs). Danger signals also enhanced the secretion of IL-1β in response to toxins A and B, and subsequent IL-1 receptor signaling accounted for the majority of the increase in IL-23 that occurred in the presence of the toxins. Inhibition of inflammasome activation in the presence of extracellular K+likewise decreased IL-23 production. Finally, we found that IL-1β was increased in the serum of patients with CDI, suggesting that this systemic response could influence downstream production of pathogenic IL-23. Identification of the synergy of danger signals with toxins A and B via inflammasome signaling represents a novel finding in the mechanistic understanding of C. difficile-induced inflammation.IMPORTANCEClostridium difficileis among the leading causes of death due to health care-associated infection, and factors determining disease severity are not well understood. C. difficile secretes toxins A and B, which cause inflammation and tissue damage, and recent findings suggest that some of this tissue damage may be due to an inappropriate host immune response. We have found that toxins A and B, in combination with both bacterium- and host-derived danger signals, can induce expression of the proinflammatory cytokines IL-1β and IL-23. Our results demonstrate that IL-1β signaling enhances IL-23 production and could lead to increased pathogenic inflammation during CDI.


2009 ◽  
Vol 99 (12) ◽  
pp. 1387-1393 ◽  
Author(s):  
M. Hodda ◽  
D. C. Cook

Potato cyst nematodes (PCN) (Globodera spp.) are quarantine pests with serious potential economic consequences. Recent new detections in Australia, Canada, and the United States have focussed attention on the consequences of spread and economic justifications for alternative responses. Here, a full assessment of the economic impact of PCN spread from a small initial incursion is presented. Models linking spread, population growth, and economic impact are combined to estimate costs of spread without restriction in Australia. Because the characteristics of the Australian PCN populations are currently unknown, the known ranges of parameters were used to obtain cost scenarios, an approach which makes the model predictions applicable generally. Our analysis indicates that mean annual costs associated with spread of PCN would increase rapidly initially, associated with increased testing. Costs would then increase more slowly to peak at over AUD$20 million per year ≈10 years into the future. Afterward, this annual cost would decrease slightly due to discounting factors. Mean annual costs over 20 years were $18.7 million, with a 90% confidence interval between AUD$11.9 million and AUD$27.0 million. Thus, cumulative losses to Australian agriculture over 20 years may exceed $370 million without action to prevent spread of PCN and entry to new areas.


Author(s):  
Robyn M Nadolny ◽  
Ashley C Kennedy ◽  
James M Rodgers ◽  
Zachary T Vincent ◽  
Hannah Cornman ◽  
...  

Abstract During September–December 2018, 25 live ticks were collected on-post at Fort Leavenworth, Kansas, in a home with a history of bat occupancy. Nine ticks were sent to the Army Public Health Center Tick-Borne Disease Laboratory and were identified as Carios kelleyi (Cooley and Kohls, 1941), a species that seldom bites humans but that may search for other sources of blood meals, including humans, when bats are removed from human dwellings. The ticks were tested for numerous agents of human disease. Rickettsia lusitaniae was identified by multilocus sequence typing to be present in two ticks, marking the first detection of this Rickettsia agent in the United States and in this species of tick. Two other Rickettsia spp. were also detected, including an endosymbiont previously associated with C. kelleyi and a possible novel Rickettsia species. The potential roles of C. kelleyi and bats in peridomestic Rickettsia transmission cycles warrant further investigation.


Sign in / Sign up

Export Citation Format

Share Document