scholarly journals Characterization of Group C Rotaviruses Associated with Diarrhea Outbreaks in Feeder Pigs

1999 ◽  
Vol 37 (5) ◽  
pp. 1484-1488 ◽  
Author(s):  
Yunjeong Kim ◽  
Kyeong-Ok Chang ◽  
Barbara Straw ◽  
Linda J. Saif

Feces and serum specimens were collected from three farms in Michigan on which ∼50-lb (8- to 9-week-old) pigs experienced diarrhea just after placement into all-in-all-out finishing barns. The clinical signs (profuse watery diarrhea lasting about 2 weeks and no vomiting) were similar on all farms, and the morbidity rate was high (ranging from 60 to 80%) but without mortality. Eleven diarrheic fecal samples from the farms were tested for group A and C rotaviruses by immune electron microscopy (IEM) and various assays. IEM indicated that the fecal samples reacted only with antiserum against group C rotaviruses, and polyacrylamide gel electrophoresis indicated that the samples had characteristic genomic electropherotypes for group C rotavirus. Group C rotavirus was detected by cell culture immunofluorescence (CCIF) tests in nine fecal samples, but no group A rotavirus was detected by enzyme-linked immunosorbent assay or CCIF. By reverse transcription (RT)-PCR, all 11 fecal samples were positive for group C rotaviruses, with only 2 samples positive for group A rotaviruses. However, a second amplification of RT-PCR products using nested primers detected group A rotaviruses in all samples. Analysis of nucleotide and deduced amino acid sequences of the RT-PCR product (partial-length VP7) of the group C rotavirus showed 87.2 to 91% nucleotide identity and 92.6 to 95.9% amino acid identity among two strong samples from the different farms and the Cowden strain of porcine group C rotavirus. All nine convalescent-phase serum samples tested had neutralizing antibodies to the Cowden strain, and the majority of them had neutralizing antibody against group A rotaviruses (OSU or/and Gottfried strains) by fluorescent focus neutralization tests. Although group C rotaviruses have been reported as a cause of sporadic diarrhea in suckling or weanling pigs, to our knowledge, this is the first report of epidemic diarrhea outbreaks associated with group C rotavirus in older pigs.

1999 ◽  
Vol 73 (11) ◽  
pp. 9284-9293 ◽  
Author(s):  
K. O. Chang ◽  
P. R. Nielsen ◽  
L. A. Ward ◽  
L. J. Saif

ABSTRACT There is serological evidence that bovine group C rotaviruses exist in the United States, but there are no reports of their isolation. Ninety fecal samples from calves with diarrhea, 81 samples from adult cows with diarrhea (winter dysentery), and 20 fecal samples from healthy adult cows were tested for group C rotaviruses by polyacrylamide gel electrophoresis, immune electron microscopy, and reverse transcription-PCR (RT-PCR). Three samples from adult cow diarrhea cases were positive only by RT-PCR, and a group C rotavirus was isolated from a positive sample in monkey kidney (MA104) cells (WD534tc/C). Genetically and serologically, the WD534tc/C strain was more closely related to the Cowden porcine group C strain than to the Shintoku bovine strain. Because the original cow feces also contained a group A rotavirus (detected after passage in cell culture), we hypothesized that such dual-rotavirus infections might play a role in the pathogenesis and host adaptation of rotaviruses. Thus, we examined the pathogenesis of WD534tc/C alone or combined with virulent (IND/A) or attenuated (NCDV/A) bovine group A rotaviruses in gnotobiotic calves. WD534tc/C alone induced diarrhea without (or with limited) virus shedding in inoculated calves (n = 3). In contrast, all calves coinfected with WD534tc/C and IND/A (n = 2) developed diarrhea and shed both viruses, whereas calves coinfected with WD534tc/C and NCDV/A (n= 3) developed diarrhea but did not shed either virus. Infection with WD534tc/C or NCDV/A alone caused only mild villous atrophy (jejunum and/or ileum), whereas dual infection with both viruses induced lesions throughout the small intestine. Although IND/A alone caused villous atrophy, more-widespread small intestinal lesions occurred in calves coinfected with WD534tc/C and IND/A. In conclusion, coinfection of calves with group A rotaviruses enhanced fecal shedding of a bovine group C rotavirus and the extent of histopathological lesions in the small intestines. Thus, our findings suggest a potential novel hypothesis involving dual infections for the adaptation of heterologous rotaviruses to new host species.


1998 ◽  
Vol 36 (11) ◽  
pp. 3178-3181 ◽  
Author(s):  
V. L. A. James ◽  
P. R. Lambden ◽  
E. O. Caul ◽  
, and I. N. Clarke

A recent study showed that 43% of a population in the United Kingdom were seropositive for group C rotavirus. The higher than expected incidence may be due to limited diagnosis of acute human group C rotavirus infections because no routine test is available. Human group C rotavirus infections are routinely diagnosed by electron microscopy (EM) and a negative group A rotavirus enzyme-linked immunosorbent assay (ELISA) result. An antigen-detection ELISA was developed with hyperimmune antibodies raised to human group C rotavirus recombinant VP6 (Bristol strain) expressed in insect cells. The assay was used to screen fecal samples to determine the prevalence of group C rotavirus infection. Samples positive by ELISA were confirmed by EM, polyacrylamide gel electrophoresis of double-stranded RNA, or detection of the VP6 gene by reverse transcription-PCR. Retrospective analysis indicated a 1 to 2% detection rate of positivity among samples from patients with acute diarrhea.


2012 ◽  
Vol 51 (No. 5) ◽  
pp. 288-295 ◽  
Author(s):  
R. Smitalova ◽  
L. Rodak ◽  
I. Psikal ◽  
B. Smid

Rotaviruses are major cause of acute diarrhea in animals and humans which can result in huge economic losses in farm animals including pigs. We collected 195 samples of feces of diarrhoeic animals. Rotavirus was demonstrated by electron microscopy using the method of negative staining in 27 samples and by ELISA test using monoclonal antibodies to the group antigen VP6 in 44 samples. Nine samples were selected for virus isolation. Three virus isolates (P375/4, P410/4 and P646/1) were successfully adapted to growth in cell line MA-104. These isolates were allocated to group A rotaviruses based on ELISA, immunoperoxidase test and electropherotype analysis. Electropherotype analysis demonstrated changes during passage in cell line in two of the three isolates. The selected sample P543/1 proved negative in ELISA in a fecal sample. Electropherotype analysis of this sample revealed a “longer” electropherotype profile. The profile was suggestive of group C rotavirus. Rotavirus group C was confirmed by RT-PCR and by sequence analysis in this sample.


1994 ◽  
Vol 6 (2) ◽  
pp. 175-181 ◽  
Author(s):  
A. Lucchelli ◽  
S. Y. Kang ◽  
M. K. Jayasekera ◽  
A. V. Parwani ◽  
D. H. Zeman ◽  
...  

Group A bovine rotaviruses (BRV) have been identified worldwide as a major cause of diarrhea in the young of many species, including humans. Group A rotaviruses are classified into serotypes on the basis of the outer capsid proteins, VP7 (G types) and VP4 (P types). To date, there are 14 G types of group A rotaviruses, with G1, G6, G8, and G10 described for BRV isolates. In this study, G6- and G lo-specific monoclonal antibodies (MAbs) were used in an enzyme-linked immunosorbent assay (ELISA) for the G typing of BRV-positive stool samples from diarrheic beef and dairy calves from South Dakota, Ohio, Michigan, Nebraska, and Washington, USA, and Ontario, Canada. ELISA plates were coated using a broadly reactive VP7 MAb (Common 60) or with G6- or G10-specific MAbs. BRV-positive fecal samples were diluted and added to duplicate wells, followed by the addition of polyclonal guinea pig anti-group A rotavirus serum as the secondary antibody. Several reference G6 and G10 BRV strains as well as other G types previously reported in cattle (G1, G2, G3, G8) and BRV-negative samples were included as G type specificity and negative controls. From a total of 308 field samples analyzed, 79% (244/308) tested positive by the broadly reactive VP7 MAb; of these, 54% (131/244) were G6 positive, 14% (35/244) were G10 positive, 4% (9/244) were both G6 and G10 positive, and 28% (69/244) were G6 and G10 negative. The negative samples may represent additional or undefined serotypes. The 89 samples from South Dakota were further subdivided into samples from beef ( n = 43) or dairy ( n = 46) herds. G6 was more prevalent in beef herd samples (67%) than in dairy herd samples (47.5%). In addition, dairy herds had higher percentages of G10-positive samples (17.5%) G6-G10 double positives (10%), and untypable samples (25%) than did beef herds, in which the prevalence of G10 positive samples was 5.5%, G6-G10 double positives was 5.5%, and untypable samples was 22%. Application of the serotype ELISA for the analysis of additional BRV samples will provide further epidemiologic data on the distribution of BRV serotypes in beef or dairy cattle, an important consideration for the development of improved BRV vaccines.


ISRN Virology ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Christianah Idowu Ayolabi ◽  
David Ajiboye Ojo ◽  
George Enyimah Armah

Approximately over 500,000 children die annually due to severe dehydrating diarrhea caused by rotaviruses. This work investigated rotavirus infection among children less than 5 years with diarrhea in Lagos and determined the circulating electropherotypes and genotypes of the virus isolates. Three hundred and two (n=302) stool samples from children below 60 months were collected from different hospitals and health care centers in Lagos and subjected to enzyme immunoassay (EIA) to determine the presence of Group A rotavirus, RT-PCR to determine the G-types, and polyacrylamide gel electrophoresis (PAGE) to determine the electropherotypes. The results show that 60.3% of the samples showed distinct rotavirus RNA migration pattern, having long electropherotypes (55.3%) of seven variations dominating over the short electropherotypes (44.5%). Six different G-types were detected (G1, G2, G3, G4, G9, and G12). Serotypes G1 and G12 showed long electropherotypic pattern while G2, G3, and G9 exhibited either short or long electropherotype. All G4 detected show short electropherotypic pattern. In conclusion, information on the genomic diversity and RNA electropherotypes of rotaviruses detected in children with diarrhea in Lagos is reported in this study.


2008 ◽  
Vol 89 (7) ◽  
pp. 1690-1698 ◽  
Author(s):  
Andrej Steyer ◽  
Mateja Poljšak-Prijatelj ◽  
Darja Barlič-Maganja ◽  
Jožica Marin

A surveillance of human, porcine and bovine rotaviruses was carried out in Slovenia in 2004 and 2005. Stool samples were collected from a total of 406 pigs (373 from asymptomatic animals), 132 cattle (126 from asymptomatic animals) and 241 humans (all with diarrhoea), tested for group A rotaviruses using RT-PCR and analysed by sequencing. The aims of the study were to determine the incidence of asymptomatic rotavirus infection in animals, to look for evidence of zoonotic transmission and to detect reassortment among rotaviruses. The rates of asymptomatic shedding of rotaviruses in pigs and cattle were 18.0 % (67/373) and 4.0 % (5/126), respectively. Evidence for zoonotic transmission was detected in one human rotavirus strain, SI-MB6, with the G3P[6] genotype combination, as the nucleotide and predicted amino acid sequences of the VP6, VP7, VP8* and NSP4 genes of strain SI-MB6 and of porcine strains showed high nucleotide and amino acid sequence identity. Two porcine rotavirus strains carried VP7 of probable human origin, suggesting an interspecies reassortment event in the past.


2002 ◽  
Vol 14 (4) ◽  
pp. 308-313 ◽  
Author(s):  
Mustafa Hasoksuz ◽  
Armando E. Hoet ◽  
Steven C. Loerch ◽  
Thomas E. Wittum ◽  
Paul R. Nielsen ◽  
...  

Recently, bovine coronavirus (BCV) has been isolated from new cattle arrivals to feedlots, but the association between respiratory and enteric infections with BCV in feedlot cattle remains uncertain. Fecal and nasal swab samples from 85 Ohio Agricultural Research and Development Center (OARDC) feedlot cattle averaging 7 months of age were collected at arrival (0) and at 4, 7, 14, and 21 days postarrival (DPA). An antigen capture enzyme-linked immunosorbent assay (ELISA) was used to detect concurrent shedding of BCV in fecal and nasal samples. All samples ELISA positive for BCV were matched with an equal number of BCV ELISA-negative samples and analyzed by reverse transcription-polymerase chain reaction (RT-PCR) of the N gene. Paired sera were collected at arrival and 21 DPA and tested for antibodies to BCV using an indirect ELISA. Information on clinical signs, treatments provided, and cattle weights were collected. The overall rates of BCV nasal and fecal shedding were 48% (41/85) and 53% (45/85) by ELISA and 84% (71/85) and 96% (82/85) by RT-PCR, respectively. The peak of BCV nasal and fecal shedding occurred at 4 DPA. Thirty-two cattle (38%) showed concurrent enteric and nasal shedding detected by both tests. Eleven percent of cattle had antibody titers against BCV at 0 DPA and 91% of cattle seroconverted to BCV by 21 DPA. The BCV fecal and nasal shedding detected by ELISA and RT-PCR were statistically correlated with ELISA antibody seroconversion ( P < 0.0001); however, BCV fecal and nasal shedding were not significantly related to clinical signs. Seroconversion to BCV was inversely related to average daily weight gains ( P < 0.06). Twenty-eight respiratory and 7 enteric BCV strains were isolated from nasal and fecal samples of 32 cattle in HRT-18 cell cultures. These findings confirm the presence of enteric and respiratory BCV infections in feedlot calves. Further studies are needed to elucidate the differences between enteric and respiratory strains of BCV and their role in the bovine respiratory disease complex of feedlot cattle.


Author(s):  
Abderrahim Hatib ◽  
Najwa Hassou ◽  
Abdelouahab Benani ◽  
Jamal Eddine Hafid ◽  
Moulay Mustapha Ennaji

Viral outbreaks can result from the consumption of contaminated bivalve mollusks. However, despite the regulation related to enteric bacteria in food products, the consumption of raw and undercooked mollusks remains linked to viral epidemics in human populations. Real-time RT-PCR is a highly sensitive approach for detecting and quantifying enteric viruses, and after eliminating enzymatic amplification inhibitors from samples of interest, sensitive and specific tests, like real-time RT-PCR, can facilitate the detection and quantification of a wide range of viruses that are concentrated in mollusk digestive tissues. The aim of the present study was to evaluate the prevalence of Group-A rotaviruses in mussel (Mytilus edulis Linnaeus, 1758) specimens (n=576) collected downstream of the Oued El Maleh Estuary, which is along the coast of Mohammedia City in Morocco, using real-time RT-PCR. Rotavirus A RNA was detected in 37.5% (n=18) of the 48 sample batches, and viral loads ranged from 0.42×101 to 1.8603×104 genomic copies per g digestive tissue. Most (72.22%) of the positive samples were collected during the wet season (September-April), and the probability of detecting rotaviruses was significantly greater during the wet season than during the dry season (P<0.001). Monitoring Rotavirus A and similar viruses in shellfish may help prevent viral contamination and preserve public health.


2020 ◽  
Author(s):  
Umer Seid Geletu ◽  
Fufa Dawo Bari ◽  
Munera Ahmednur Usmael ◽  
Asamino Tesfaye

Abstract Background: Coronavirus and Rotavirus are most commonly associated etiologies for calves’ diarrhea resulting in loss of productivity and economy of farmers. However, various facets of diarrheal disease caused by coronavirus and rotavirus in calves in Ethiopia are inadequately understood. A cross sectional study was conducted with the aim of isolation and molecular characterization of coronavirus and rotavirus from calves in central part of Oromia (Bishoftu, Sebata, Holeta and Addis Ababa), Ethiopia from November 2018 to May 2019. The four study areas were purposively selected and fecal samples were collected by simple random sampling for diagnosis of coronavirus and rotavirus infection by using antigen detection Enzyme linked immunosorbent assay (Ag-ELISA) kit. In addition, this study was carried out to have insight in prevalence and associated risk factors of coronavirus and rotavirus infection in calves. Result: During the study 83 diarrheic and 162 non-diarrheic fecal samples collected from calves less than 4 weeks of age were screened for coronavirus and rotavirus. Of the 83 diarrheic samples, 1 sample (1.2%) was positive for coronavirus antigen (Ag) and 6 samples (7.2%) were found to be positive for rotavirus antigen (Ag) by Ag-ELISA. All the non-diarrheic samples were negative for both coronavirus and rotavirus Ag. The overall prevalence of coronavirus and rotavirus infection in calves were estimated as 0.4% (1/245) and 2.45% (6/245) respectively. All samples (7) of ELISA test positive of both coronavirus and rotavirus were propagated in Madin Darby bovine kidney cells (MDBK). After 3 subsequent passages, progressive cytopathic effect (CPE) i.e. rounding, detachment as well as destruction of mono-layer cell of five sample (1 sample of coronavirus and 4 sample of rotavirus) (71.4%) were observed. At the molecular stage, reverse transcriptase polymerase chain reaction (RT-PCR) technique was used to determine the presence of coronavirus and rotavirus nucleic acid by using specific primers. The 5 samples that were coronavirus and rotavirus antigen positive by ELISA and develop CPE on cell culture were also positive on RT-PCR technique. Infection prevalence peaked have been obtained at 1st and 2nd weeks of age in male calves. Conclusion: Diarrheal disease caused by coronavirus and rotavirus has a great health problem in calves that interrupts production benefits with reduced weight gain and increased mortality, and its potential for zoonotic spread. So the present findings show coronavirus and rotavirus infection in calves in Ethiopia that needs to be addressed by practicing early colostrums feeding in newborn calves, using vaccine, or improving livestock management.


2020 ◽  
Vol 7 (2) ◽  
pp. 43
Author(s):  
Maria Paola Maurelli ◽  
Antonio Bosco ◽  
Valentina Foglia Manzillo ◽  
Fabrizio Vitale ◽  
Daniela Giaquinto ◽  
...  

Canine leishmaniosis (CanL) is caused by protozoans of the genus Leishmania and characterized by a broad spectrum of clinical signs in dogs. Early diagnosis is of great importance in order to perform an appropriate therapy and to prevent progression towards severe disease. The aim of this study was to compare a point-of-care molecular technique, i.e., the loop-mediated isothermal amplification (LAMP), with a real-time polymerase chain reaction (Rt-PCR), and three serological techniques, i.e., immunofluorescence antibody test (IFAT), enzyme-linked immunosorbent assay (ELISA), and a rapid SNAP Leishmania test, to develop an integrated approach for the diagnosis of CanL. Sixty dogs were chosen after physical examination and collection of blood and sera samples, fine-needle aspiration of lymph nodes, and conjunctival swabs were performed. Lymphadenopathy (82.3%), as well as clinicopathological alterations of total proteins (70.6%), were the most frequent signs. Forty-one (68.3%) samples resulted positive at least to one technique. IFAT resulted in the best serological diagnostic method (specificity = 100%, sensitivity = 97.2%), detecting a higher number of positive samples than those revealed by other techniques. Among the samples used for molecular analysis, fine-needle aspiration of lymph nodes was revealed as the best sample source. LAMP showed a substantial agreement (κ = 0.80; p <0.0001) with Rt-PCR; therefore, it could be promising for the rapid diagnosis of CanL. Nevertheless, further studies should be performed to confirm these findings.


Sign in / Sign up

Export Citation Format

Share Document