scholarly journals Keratinocyte-Secreted Laminin 5 Can Function as a Transient Receptor for Human Papillomaviruses by Binding Virions and Transferring Them to Adjacent Cells

2006 ◽  
Vol 80 (18) ◽  
pp. 8940-8950 ◽  
Author(s):  
Timothy D. Culp ◽  
Lynn R. Budgeon ◽  
M. Peter Marinkovich ◽  
Guerrino Meneguzzi ◽  
Neil D. Christensen

ABSTRACT Human papillomaviruses (HPVs) replicate only in the terminally differentiating epithelium of the skin and mucosa. While infection of basal keratinocytes is considered a requirement for permissive infection, it remains unclear whether virions can specifically target basal cells for adsorption and uptake following epithelial wounding. We present evidence that HPV binds specifically to laminin 5 (LN5), a component of the extracellular matrix (ECM) secreted by migrating and basal keratinocytes. HPV type 11 capsids colocalized with LN5 in the ECM secreted by vaginal keratinocytes. Binding of both virions and virus-like particles to purified LN5 and to the LN5-rich ECM secreted by cultured keratinocytes was effectively blocked by pretreatment with anti-LN5 antibodies. HPV capsid binding to human cervical mucosa sections included the basement membrane which contains LN5. Cultured keratinocytes expressing α6 integrin, a transmembrane protein known to bind LN5, were readily infected by virions preadsorbed to LN5-containing substrates, whereas mutant keratinocytes lacking α6 integrin were relatively resistant to infection via this route. These findings suggest a model of natural HPV infection in which proliferating keratinocytes expressing α6 integrin at the site of epithelial wounding might be targeted by virions adsorbed transiently to LN5 secreted by migrating keratinocytes.

2007 ◽  
Vol 81 (20) ◽  
pp. 10970-10980 ◽  
Author(s):  
Hans-Christoph Selinka ◽  
Luise Florin ◽  
Hetal D. Patel ◽  
Kirsten Freitag ◽  
Michaela Schmidtke ◽  
...  

ABSTRACT Infection with various human papillomaviruses (HPVs) induces cervical cancers. Cell surface heparan sulfates (HS) have been shown to serve as primary attachment receptors, and molecules with structural similarity to cell surface HS, like heparin, function as competitive inhibitors of HPV infection. Here we demonstrate that the N,N′-bisheteryl derivative of dispirotripiperazine, DSTP27, efficiently blocks papillomavirus infection by binding to HS moieties, with 50% inhibitory doses of up to 0.4 μg/ml. In contrast to short-term inhibitory effects of heparin, pretreatment of cells with DSTP27 significantly reduced HPV infection for more than 30 h. Using DSTP27 and heparinase, we furthermore demonstrate that HS moieties, rather than laminin 5, present in the extracellular matrix (ECM) secreted by keratinocytes are essential for infectious transfer of ECM-bound virions to cells. Prior binding to ECM components, especially HS, partially alleviated the requirement for cell surface HS. DSTP27 blocks infection by cell-bound virions by feeding into a noninfectious entry pathway. Under these conditions, virus colocalized with HS moieties in endocytic vesicles. Similarly, postattachment treatment of cells with heparinase, cytochalasin D, or neutralizing antibodies resulted in uptake of virions without infection, indicating that deviation into a noninfectious entry pathway is a major mode of postattachment neutralization. In untreated cells, initial colocalization of virions with HS on the cell surface and in endocytic vesicles was lost with time. Our data suggest that initial attachment of HPV to HS proteoglycans (HSPGs) must be followed by secondary interaction with additional HS side chains and transfer to a non-HSPG receptor for successful infection.


2021 ◽  
Vol 2 (1) ◽  
pp. 29-41
Author(s):  
Giorgia Acquaviva ◽  
Michela Visani ◽  
Viviana Sanza ◽  
Antonio De Leo ◽  
Thais Maloberti ◽  
...  

(1) Background: Human papillomaviruses (HPVs) are known to be related to the development of about 5% of all human cancers. The clinical relevance of HPV infection has been deeply investigated in carcinomas of the oropharyngeal area, uterine cervix, and anogenital area. To date, several different methods have been used for detecting HPV infection. The aim of the present study was to compare three different methods for the diagnosis of the presence of the HPV genome. (2) Methods: A total of 50 samples were analyzed. Twenty-five of them were tested using both next generation sequencing (NGS) and VisionArray® technology, the other 25 were tested using Hybrid Capture (HC) II assay and VisionArray® technology. (3) Results: A substantial agreement was obtained using NGS and VisionArray® (κ = 0.802), as well as between HC II and VisionArray® (κ = 0.606). In both analyses, the concordance increased if only high risk HPVs I(HR-HPVs) were considered as “positive”. (4) Conclusions: Our data highlighted the importance of technical choice in HPV characterization, which should be guided by the clinical aims, costs, starting material, and turnaround time for results.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 714
Author(s):  
Matthias Läsche ◽  
Horst Urban ◽  
Julia Gallwas ◽  
Carsten Gründker

Cervical cancer is responsible for around 5% of all human cancers worldwide. It develops almost exclusively from an unsolved, persistent infection of the squamocolumnar transformation zone between the endo- and ecto-cervix with various high-risk (HR) human papillomaviruses (HPVs). The decisive turning point on the way to persistent HPV infection and malignant transformation is an immune system weakened by pathobionts and oxidative stress and an injury to the cervical mucosa, often caused by sexual activities. Through these injury and healing processes, HPV viruses, hijacking activated keratinocytes, move into the basal layers of the cervical epithelium and then continue their development towards the distal prickle cell layer (Stratum spinosum). The microbial microenvironment of the cervical tissue determines the tissue homeostasis and the integrity of the protective mucous layer through the maintenance of a healthy immune and metabolic signalling. Pathological microorganisms and the resulting dysbiosis disturb this signalling. Thus, pathological inflammatory reactions occur, which manifest the HPV infection. About 90% of all women contract an HPV infection in the course of their lives. In about 10% of cases, the virus persists and cervical intra-epithelial neoplasia (CIN) develops. Approximately 1% of women with a high-risk HPV infection incur a cervical carcinoma after 10 to 20 years. In this non-systematic review article, we summarise how the sexually and microbial mediated pathogenesis of the cervix proceeds through aberrant immune and metabolism signalling via CIN to cervical carcinoma. We show how both the virus and the cancer benefit from the same changes in the immune and metabolic environment.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 764
Author(s):  
Jaroslav Nunvar ◽  
Lucie Pagacova ◽  
Zuzana Vojtechova ◽  
Nayara Trevisan Doimo de Azevedo ◽  
Jana Smahelova ◽  
...  

Squamous cell carcinomas (SCCs) in the anogenital and head and neck regions are associated with high-risk types of human papillomaviruses (HR-HPV). Deregulation of miRNA expression is an important contributor to carcinogenesis. This study aimed to pinpoint commonly and uniquely deregulated miRNAs in cervical, anal, vulvar, and tonsillar tumors of viral or non-viral etiology, searching for a common set of deregulated miRNAs linked to HPV-induced carcinogenesis. RNA was extracted from tumors and nonmalignant tissues from the same locations. The miRNA expression level was determined by next-generation sequencing. Differential expression of miRNAs was calculated, and the patterns of miRNA deregulation were compared between tumors. The total of deregulated miRNAs varied between tumors of different locations by two orders of magnitude, ranging from 1 to 282. The deregulated miRNA pool was largely tumor-specific. In tumors of the same location, a low proportion of miRNAs were exclusively deregulated and no deregulated miRNA was shared by all four types of HPV-positive tumors. The most significant overlap of deregulated miRNAs was found between tumors which differed in location and HPV status (HPV-positive cervical tumors vs. HPV-negative vulvar tumors). Our results imply that HPV infection does not elicit a conserved miRNA deregulation in SCCs.


2019 ◽  
Author(s):  
Nancy M. Cladel ◽  
Pengfei Jiang ◽  
Jingwei J. Li ◽  
Xuwen Peng ◽  
Timothy K. Cooper ◽  
...  

AbstractHuman papillomavirus (HPV) infections are commonly thought to be strictly sexually transmitted. However, studies have demonstrated the presence of HPV in cancers of many non-sexual internal organs, raising the question as to how the viruses gain access to these sites. A possible connection between blood transfusion and HPV-associated disease has not received much attention. We show, in two animal models, that blood infected with papillomavirus yields infections at permissive sites. Furthermore, we demonstrate that blood from actively infected mice can transmit the infection to naïve animals. Finally, we report papillomavirus infections in the stomach tissues of animals infected via the blood. Stomach tissues are not known to be permissive for papillomavirus infection, although the literature suggests that HPVs may be associated with a subset of gastric cancers. These results indicate that the human blood supply, which is not screened for papillomaviruses, could be a potential source of HPV infection and subsequent cancers.SUMMARYHuman papillomaviruses cause 5% of human cancers. Currently, blood banks do not screen for these viruses. We demonstrate that blood transfused from papillomavirus-infected animals produces infections in recipients. Public health implications are significant if the same is true for humans.DefinitionsLocal papillomavirus infection:An infection initiated by the direct application of virus or viral DNA to the site of infectionIntravenous (IV) papillomavirus infection:An infection resulting from blood-borne delivery of virus or viral DNA to the site of infection.


2000 ◽  
Vol 48 (4) ◽  
pp. 535-544 ◽  
Author(s):  
Peter H. Michelson ◽  
Margaret Tigue ◽  
Jonathan C.R. Jones

Epithelial cells attach to the basement membrane through adhesive contacts between the basal cells of the epithelium and the proteins of the extracellular matrix (ECM). The hemidesmosome (HD) is a specialized cell-ECM contact, that mediates the attachment of the epithelial cell basal surface to the ECM. In bronchial epithelial cells, the protein components that constitute the HD have not been demonstrated. Using immunohistochemical techniques, we determined that normal human bronchial epithelial (NHBE) cells express the HD cell surface integrin α6β4 and produce laminin 5, the ECM protein associated with HDs. Furthermore, expression of the HD-associated structural proteins, bullous pemphigoid antigens 1 (BPAG 1) and 2 (BPAG 2), was demonstrated in NHBE cells by immunofluorescence microscopy and immunoblot analyses. In addition, we confirmed the presence of laminin 5 in the basement membrane (BM) of bronchial epithelial biopsy specimens and of BP230, BP180, and the α6β4 integrin heterodimer at the site of bronchial epithelial cell-ECM interaction in vivo. Finally, using electron microscopy, we were able to demonstrate intact HDs in a glutaraldehyde-fixed NHBE cell monolayer. These findings suggest that bronchial epithelium forms HDs and that the laminin 5-α6β4 integrin interaction may be important in stabilizing epithelial cell adhesion to the BM in the lung.


1998 ◽  
Vol 46 (3) ◽  
pp. 353-360 ◽  
Author(s):  
Tiina Kainulainen ◽  
Lari Häkkinen ◽  
Sara Hamidi ◽  
Kirsi Larjava ◽  
Matti Kallioinen ◽  
...  

We examined the expression of laminin-5 and its integrin receptors during reepithelialization of human wounds. We used suction blisters of skin as a model of keratinocyte migration on a basement membrane matrix and mucosal full-thickness wounds as a model in which keratinocytes migrate in a provisional matrix. An animal model, in which human epidermal keratinocytes were injected into the back of athymic mice, was used to follow the deposition of the basement membrane components. In 4-day-old blisters, about 20–50 cells at the leading edge of the migrating tongue showed cytoplasmic laminin-5 immunostaining. Laminin-5 mRNA was detected in 15–30 cells at the leading edge of the migrating epidermis. α3β1 and α6β4 integrins were found in membrane projections of the migrating basal cells and also in suprabasal cell layers, suggesting their combined role in binding laminin-5. In mucosal wounds, laminin-5 was the only basement membrane zone component that was deposited between the clot and the migrating keratinocytes. In the animal model, linear deposition of laminin-5 and α6β4 integrin was already seen on Day 2, whereas the other basement membrane zone components were not yet organized. The results suggest that, regardless of the injury and the microenvironment, laminin-5 plays an essential role in the interaction between wound keratinocytes and the surrounding matrix.


2004 ◽  
Vol 78 (23) ◽  
pp. 12901-12909 ◽  
Author(s):  
David Baud ◽  
Françoise Ponci ◽  
Martine Bobst ◽  
Pierre De Grandi ◽  
Denise Nardelli-Haefliger

ABSTRACT Cervical cancer results from cervical infection by human papillomaviruses (HPVs), especially HPV16. An effective vaccine against these HPVs is expected to have a dramatic impact on the incidence of this cancer and its precursor lesions. The leading candidate, a subunit prophylactic HPV virus-like particle (VLP) vaccine, can protect women from HPV infection. An alternative improved vaccine that avoids parenteral injection, that is efficient with a single dose, and that induces mucosal immunity might greatly facilitate vaccine implementation in different settings. In this study, we have constructed a new generation of recombinant Salmonella organisms that assemble HPV16 VLPs and induce high titers of neutralizing antibodies in mice after a single nasal or oral immunization with live bacteria. This was achieved through the expression of a HPV16 L1 capsid gene whose codon usage was optimized to fit with the most frequently used codons in Salmonella. Interestingly, the high immunogenicity of the new recombinant bacteria did not correlate with an increased expression of L1 VLPs but with a greater stability of the L1-expressing plasmid in vitro and in vivo in absence of antibiotic selection. Anti-HPV16 humoral and neutralizing responses were also observed with different Salmonella enterica serovar Typhimurium strains whose attenuating deletions have already been shown to be safe after oral vaccination of humans. Thus, our findings are a promising improvement toward a vaccine strain that could be tested in human volunteers.


1997 ◽  
Vol 17 (6) ◽  
pp. 3056-3064 ◽  
Author(s):  
T T Chen ◽  
R L Wu ◽  
F Castro-Munozledo ◽  
T T Sun

Rabbit corneal epithelial cells cultured in the presence of 3T3 feeder cells undergo biochemical differentiation, as evidenced by their initial expression of K5 and K14 keratins characteristic of basal keratinocytes, followed by the subsequent expression of K3 and K12 keratin markers of corneal epithelial differentiation. Previous data established that mutations of an Sp1 site in a DNA element, E, that contains overlapping Sp1 and AP-2 motifs reduce K3 gene promoter activity by 70% in transfection assays. We show here that Sp1 activates while AP-2 represses the K3 promoter. Although undifferentiated corneal epithelial basal cells express equal amounts of Sp1 and AP-2 DNA-binding activities, the differentiated cells down-regulate their Sp1 activity slightly but their AP-2 activity drastically, thus resulting in a six- to sevenfold increase in the Sp1/AP-2 ratio. This change coincides with the activation and suppression of the differentiation-related K3 gene and the basal cell-related K14 keratin gene, respectively. In addition, we show that polyamines, which are present in a high concentration in proliferating basal keratinocytes, can inhibit the binding of Sp1 to its cognate binding motif but not that of AP-2. These results suggest that the relatively low Sp1/AP-2 ratio as well as the polyamine-mediated inhibition of Sp1 binding to the E motif may account, in part, for the suppression of the K3 gene in corneal epithelial basal cells, while the elevated Sp1/AP-2 ratio may be involved in activating the K3 gene in differentiated corneal epithelial cells. Coupled with the previous demonstration that AP-2 activates the K14 gene in basal cells, the switch of the Sp1/AP-2 ratio during corneal epithelial differentiation may play a role in the reciprocal expression of the K3 and K14 genes in the basal and suprabasal cell layers.


2005 ◽  
Vol 12 (8) ◽  
pp. 959-969 ◽  
Author(s):  
Dennis Dias ◽  
Jeff Van Doren ◽  
Sonela Schlottmann ◽  
Sheri Kelly ◽  
Derek Puchalski ◽  
...  

ABSTRACT A human papillomavirus (HPV) multiplexed competitive Luminex immunoassay first described by Opalka et al. (D. Opalka, C. E. Lachman, S. A. MacMullen, K. U. Jansen, J. F. Smith, N. Chirmule, and M. T. Esser, Clin. Diagn. Lab. Immunol. 10:108-115, 2003) was optimized and validated for use in epidemiology studies and vaccine clinical trials. Optimization increased both the analytical sensitivity and the clinical specificity of the assay to more effectively discriminate the low-titer antibody response of HPV-infected persons from noninfected individuals. The characteristics of the assay that were optimized included monoclonal antibody (MAb) specificity, scaling up the conjugation of virus-like particles (VLPs) to microspheres, VLP concentration, MAb concentration, sample matrix, sample dilution, incubation time, heat inactivation of sample sera, and detergent effects on assay buffer. The assay was automated by use of a TECAN Genesis Workstation, thus improving assay throughput, reproducibility, and operator safety. Following optimization, the assay was validated using several distinct serum panels from individuals determined to be at low and high risk for HPV infection. The validated assay was then used to determine the clinical serostatus cutoff. This high-throughput assay has proven useful for performing epidemiology studies and evaluating the efficacy of prophylactic HPV vaccines.


Sign in / Sign up

Export Citation Format

Share Document