scholarly journals Inhibition of Transfer to Secondary Receptors by Heparan Sulfate-Binding Drug or Antibody Induces Noninfectious Uptake of Human Papillomavirus

2007 ◽  
Vol 81 (20) ◽  
pp. 10970-10980 ◽  
Author(s):  
Hans-Christoph Selinka ◽  
Luise Florin ◽  
Hetal D. Patel ◽  
Kirsten Freitag ◽  
Michaela Schmidtke ◽  
...  

ABSTRACT Infection with various human papillomaviruses (HPVs) induces cervical cancers. Cell surface heparan sulfates (HS) have been shown to serve as primary attachment receptors, and molecules with structural similarity to cell surface HS, like heparin, function as competitive inhibitors of HPV infection. Here we demonstrate that the N,N′-bisheteryl derivative of dispirotripiperazine, DSTP27, efficiently blocks papillomavirus infection by binding to HS moieties, with 50% inhibitory doses of up to 0.4 μg/ml. In contrast to short-term inhibitory effects of heparin, pretreatment of cells with DSTP27 significantly reduced HPV infection for more than 30 h. Using DSTP27 and heparinase, we furthermore demonstrate that HS moieties, rather than laminin 5, present in the extracellular matrix (ECM) secreted by keratinocytes are essential for infectious transfer of ECM-bound virions to cells. Prior binding to ECM components, especially HS, partially alleviated the requirement for cell surface HS. DSTP27 blocks infection by cell-bound virions by feeding into a noninfectious entry pathway. Under these conditions, virus colocalized with HS moieties in endocytic vesicles. Similarly, postattachment treatment of cells with heparinase, cytochalasin D, or neutralizing antibodies resulted in uptake of virions without infection, indicating that deviation into a noninfectious entry pathway is a major mode of postattachment neutralization. In untreated cells, initial colocalization of virions with HS on the cell surface and in endocytic vesicles was lost with time. Our data suggest that initial attachment of HPV to HS proteoglycans (HSPGs) must be followed by secondary interaction with additional HS side chains and transfer to a non-HSPG receptor for successful infection.

2007 ◽  
Vol 81 (16) ◽  
pp. 8784-8792 ◽  
Author(s):  
Patricia M. Day ◽  
Cynthia D. Thompson ◽  
Christopher B. Buck ◽  
Yuk-Ying S. Pang ◽  
Douglas R. Lowy ◽  
...  

ABSTRACT The mechanisms of human papillomavirus (HPV) neutralization by antibodies are incompletely understood. We have used HPV16 pseudovirus infection of HaCaT cells to analyze how several neutralizing monoclonal antibodies (MAbs) generated against HPV16 L1 interfere with the process of keratinocyte infection. HPV16 capsids normally bind to both the cell surface and extracellular matrix (ECM) of HaCaT cells. Surprisingly, two strongly neutralizing MAbs, V5 and E70, did not prevent attachment of capsids to the cell surface. However, they did block association with the ECM and prevented internalization of cell surface-bound capsids. In contrast, MAb U4 prevented binding to the cell surface but not to the ECM. The epitope recognized by U4 was inaccessible when virions were bound to the cell surface but became accessible after endocytosis, presumably coinciding with receptor detachment. Treatment of capsids with heparin, which is known to interfere with binding to cell surface heparan sulfate proteoglycans (HSPGs), also resulted in HPV16 localization to the ECM. These results suggest that the U4 epitope on the intercapsomeric C-terminal arm is likely to encompass the critical HSPG interaction residues for HPV16, while the V5 and E70 epitopes at the apex of the capsomer overlap the ECM-binding sites. We conclude that neutralizing antibodies can inhibit HPV infection by multiple distinct mechanisms, and understanding these mechanisms can add insight to the HPV entry processes.


2004 ◽  
Vol 78 (23) ◽  
pp. 12901-12909 ◽  
Author(s):  
David Baud ◽  
Françoise Ponci ◽  
Martine Bobst ◽  
Pierre De Grandi ◽  
Denise Nardelli-Haefliger

ABSTRACT Cervical cancer results from cervical infection by human papillomaviruses (HPVs), especially HPV16. An effective vaccine against these HPVs is expected to have a dramatic impact on the incidence of this cancer and its precursor lesions. The leading candidate, a subunit prophylactic HPV virus-like particle (VLP) vaccine, can protect women from HPV infection. An alternative improved vaccine that avoids parenteral injection, that is efficient with a single dose, and that induces mucosal immunity might greatly facilitate vaccine implementation in different settings. In this study, we have constructed a new generation of recombinant Salmonella organisms that assemble HPV16 VLPs and induce high titers of neutralizing antibodies in mice after a single nasal or oral immunization with live bacteria. This was achieved through the expression of a HPV16 L1 capsid gene whose codon usage was optimized to fit with the most frequently used codons in Salmonella. Interestingly, the high immunogenicity of the new recombinant bacteria did not correlate with an increased expression of L1 VLPs but with a greater stability of the L1-expressing plasmid in vitro and in vivo in absence of antibiotic selection. Anti-HPV16 humoral and neutralizing responses were also observed with different Salmonella enterica serovar Typhimurium strains whose attenuating deletions have already been shown to be safe after oral vaccination of humans. Thus, our findings are a promising improvement toward a vaccine strain that could be tested in human volunteers.


2006 ◽  
Vol 80 (18) ◽  
pp. 8940-8950 ◽  
Author(s):  
Timothy D. Culp ◽  
Lynn R. Budgeon ◽  
M. Peter Marinkovich ◽  
Guerrino Meneguzzi ◽  
Neil D. Christensen

ABSTRACT Human papillomaviruses (HPVs) replicate only in the terminally differentiating epithelium of the skin and mucosa. While infection of basal keratinocytes is considered a requirement for permissive infection, it remains unclear whether virions can specifically target basal cells for adsorption and uptake following epithelial wounding. We present evidence that HPV binds specifically to laminin 5 (LN5), a component of the extracellular matrix (ECM) secreted by migrating and basal keratinocytes. HPV type 11 capsids colocalized with LN5 in the ECM secreted by vaginal keratinocytes. Binding of both virions and virus-like particles to purified LN5 and to the LN5-rich ECM secreted by cultured keratinocytes was effectively blocked by pretreatment with anti-LN5 antibodies. HPV capsid binding to human cervical mucosa sections included the basement membrane which contains LN5. Cultured keratinocytes expressing α6 integrin, a transmembrane protein known to bind LN5, were readily infected by virions preadsorbed to LN5-containing substrates, whereas mutant keratinocytes lacking α6 integrin were relatively resistant to infection via this route. These findings suggest a model of natural HPV infection in which proliferating keratinocytes expressing α6 integrin at the site of epithelial wounding might be targeted by virions adsorbed transiently to LN5 secreted by migrating keratinocytes.


2005 ◽  
Vol 79 (11) ◽  
pp. 6838-6847 ◽  
Author(s):  
Nicole A. Patterson ◽  
Jessica L. Smith ◽  
Michelle A. Ozbun

ABSTRACT Oncogenic human papillomaviruses (HPVs) are difficult to study experimentally as they replicate at low levels in vivo. This has precluded the purification of high-risk HPV virions from in vivo lesions. Virus-like particles (VLPs) and pseudovirions from low- and high-risk HPV types can emulate various aspects of HPV virion attachment and infections. These studies suggest that HPV infection is mediated by α6-integrin and/or heparan-sulfonated receptors. However, whether VLPs and pseudovirions accurately reflect the infection process of HPV virions has not been verified. We generated infectious HPV31b virions from organotypic (raft) tissues and performed experimental infections in a variety of cells. Successful infection following viral attachment, internalization, and nuclear transport was assayed by detecting newly synthesized, spliced HPV transcripts using reverse transcription (RT)-PCR or RT-quantitative PCR. Most human epithelial cells were infected with HPV31b at a multiplicity of infection as low as 1 to 10 viral genome equivalents per cell. HPV31b infection was detected in other cell lines, including COS-7 monkey kidney cells, but higher viral multiplicities of infection were required. Heparin preparations of various molecular weights or heparinase I treatment of cells prevented HPV31b infection of COS-7 cells and C-33A human cervical cancer cells in reproducible and dose-dependent manners. However, these reagents were unable to block infection of human keratinocytes, including HaCaT and N/TERT-1 cells and low-passage human foreskin keratinocytes. These data suggest that HPV31b infection of human keratinocytes, the natural host cell for HPV infections in vivo, does not require a heparan-sulfonated receptor, whereas heparan sulfate is important for infection of some other cells.


1991 ◽  
Vol 113 (4) ◽  
pp. 731-741 ◽  
Author(s):  
S H Hansen ◽  
K Sandvig ◽  
B van Deurs

The transfer of molecules from the cell surface to the early endosomes is mediated by preendosomal vesicles. These vesicles, which have pinched off completely from the plasma membrane but not yet fused with endosomes, form the earliest compartment along the endocytic route. Using a new assay to distinguish between free and cell surface connected vesicle profiles, we have characterized the preedosomal compartment ultrastructurally. Our basic experimental setup was labeling of the entire cell surface at 4 degrees C with Con A-gold, warming of the cells to 37 degrees C to allow endocytosis, followed by replacing incubation medium with fixative, all within either 30 or 60 s. Then the fixed cells were incubated with anti-Con A-HRP to distinguish truly free (gold labeled) endocytic vesicles from surface-connected structures. Finally, analysis of thin (20-30 nm) serial sections and quantification of vesicle diameters were carried out. Based on this approach it is shown that the preendosomal compartment comprises both clathrin-coated and non-coated endocytic vesicles with approximately the same frequency but with distinct diameter distributions, the average noncoated vesicle being smaller (95 nm) than the average coated one (110 nm). In parallel experiments, using an anti-transferrin receptor gold-conjugate as a specific marker for clathrin-dependent endocytosis it is also shown that uncoating of coated vesicles plays only a minor role for the total frequency of noncoated vesicles. Furthermore, after perturbation of clathrin-dependent endocytosis by potassium depletion where uptake of transferrin is blocked, noncoated endocytic vesicles with Con A-gold, but not coated vesicles, exist already after 30 and 60 s. Finally, it is shown that the existence of small, free vesicles in the short-time experiments cannot be ascribed to recycling from the early endosomes.


2021 ◽  
Vol 2 (1) ◽  
pp. 29-41
Author(s):  
Giorgia Acquaviva ◽  
Michela Visani ◽  
Viviana Sanza ◽  
Antonio De Leo ◽  
Thais Maloberti ◽  
...  

(1) Background: Human papillomaviruses (HPVs) are known to be related to the development of about 5% of all human cancers. The clinical relevance of HPV infection has been deeply investigated in carcinomas of the oropharyngeal area, uterine cervix, and anogenital area. To date, several different methods have been used for detecting HPV infection. The aim of the present study was to compare three different methods for the diagnosis of the presence of the HPV genome. (2) Methods: A total of 50 samples were analyzed. Twenty-five of them were tested using both next generation sequencing (NGS) and VisionArray® technology, the other 25 were tested using Hybrid Capture (HC) II assay and VisionArray® technology. (3) Results: A substantial agreement was obtained using NGS and VisionArray® (κ = 0.802), as well as between HC II and VisionArray® (κ = 0.606). In both analyses, the concordance increased if only high risk HPVs I(HR-HPVs) were considered as “positive”. (4) Conclusions: Our data highlighted the importance of technical choice in HPV characterization, which should be guided by the clinical aims, costs, starting material, and turnaround time for results.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 714
Author(s):  
Matthias Läsche ◽  
Horst Urban ◽  
Julia Gallwas ◽  
Carsten Gründker

Cervical cancer is responsible for around 5% of all human cancers worldwide. It develops almost exclusively from an unsolved, persistent infection of the squamocolumnar transformation zone between the endo- and ecto-cervix with various high-risk (HR) human papillomaviruses (HPVs). The decisive turning point on the way to persistent HPV infection and malignant transformation is an immune system weakened by pathobionts and oxidative stress and an injury to the cervical mucosa, often caused by sexual activities. Through these injury and healing processes, HPV viruses, hijacking activated keratinocytes, move into the basal layers of the cervical epithelium and then continue their development towards the distal prickle cell layer (Stratum spinosum). The microbial microenvironment of the cervical tissue determines the tissue homeostasis and the integrity of the protective mucous layer through the maintenance of a healthy immune and metabolic signalling. Pathological microorganisms and the resulting dysbiosis disturb this signalling. Thus, pathological inflammatory reactions occur, which manifest the HPV infection. About 90% of all women contract an HPV infection in the course of their lives. In about 10% of cases, the virus persists and cervical intra-epithelial neoplasia (CIN) develops. Approximately 1% of women with a high-risk HPV infection incur a cervical carcinoma after 10 to 20 years. In this non-systematic review article, we summarise how the sexually and microbial mediated pathogenesis of the cervix proceeds through aberrant immune and metabolism signalling via CIN to cervical carcinoma. We show how both the virus and the cancer benefit from the same changes in the immune and metabolic environment.


2002 ◽  
Vol 76 (13) ◽  
pp. 6480-6486 ◽  
Author(s):  
Alba-Lucia Combita ◽  
Antoine Touzé ◽  
Latifa Bousarghin ◽  
Neil D. Christensen ◽  
Pierre Coursaget

ABSTRACT The neutralizing activities of polyclonal antibodies and monoclonal antibodies (MAbs) obtained by immunization of mice with L1 virus-like particles (VLPs) were investigated by using pseudovirion infectivity assays for human papillomavirus type 16 (HPV-16), HPV-31, HPV-33, HPV-45, HPV-58, and HPV-59 to obtain a better definition of cross-neutralization between high-risk HPVs. In this study, we confirmed and extended previous studies indicating that most genital HPV genotypes represent separate serotypes, and the results suggest that the classification of serotypes is similar to that of genotypes. In addition, three cross-neutralizing MAbs were identified (HPV-16.J4, HPV-16.I23, and HPV-33.E12). MAb HPV-16.J4 recognized a conserved linear epitope located within the FG loop of the L1 protein, and HPV-16.I23 recognized another located within the DE loop. The results suggested that reactivity of MAb HPV-16.I23 to L1 protein is lost when leucine 152 of the HPV-16 L1 protein is replaced by phenylalanine. This confirmed the existence of linear epitopes within the L1 protein that induce neutralizing antibodies, and this is the first evidence that such linear epitopes induce cross-neutralization. However, the cross-neutralization induced by L1 VLPs represents less than 1% of the neutralizing activity induced by the dominant conformational epitopes, and it is questionable whether this is sufficient to offer cross-protection in vivo.


2016 ◽  
Vol 90 (14) ◽  
pp. 6224-6234 ◽  
Author(s):  
Matthew P. Bronnimann ◽  
Christine M. Calton ◽  
Samantha F. Chiquette ◽  
Shuaizhi Li ◽  
Mingfeng Lu ◽  
...  

ABSTRACTDespite an abundance of evidence supporting an important role for the cleavage of minor capsid protein L2 by cellular furin, direct cleavage of capsid-associated L2 during human papillomavirus 16 (HPV16) infection remains poorly characterized. The conserved cleavage site, close to the L2 N terminus, confounds observation and quantification of the small cleavage product by SDS-PAGE. To overcome this difficulty, we increased the size shift by fusing a compact protein domain, thePropionibacterium shermaniitranscarboxylase domain (PSTCD), to the N terminus of L2. The infectious PSTCD-L2 virus displayed an appreciable L2 size shift during infection of HaCaT keratinocytes. Cleavage under standard cell culture conditions rarely exceeded 35% of total L2. Cleavage levels were enhanced by the addition of exogenous furin, and the absolute levels of infection correlated to the level of L2 cleavage. Cleavage occurred on both the HaCaT cell surface and extracellular matrix (ECM). Contrary to current models, experiments on the involvement of cyclophilins revealed little, if any, role for these cellular enzymes in the modulation of furin cleavage. HPV16 L2 contains two consensus cleavage sites, Arg5 (2RHKR5) and Arg12 (9RTKR12). Mutant PSTCD-L2 viruses demonstrated that although furin can cleave either site, cleavage must occur at Arg12, as cleavage at Arg5 alone is insufficient for successful infection. Mutation of the conserved cysteine residues revealed that the Cys22-Cys28 disulfide bridge is not required for cleavage. The PSTCD-L2 virus or similar N-terminal fusions will be valuable tools to study additional cellular and viral determinants of furin cleavage.IMPORTANCEFurin cleavage of minor capsid protein L2 during papillomavirus infection has been difficult to directly visualize and quantify, confounding efforts to study this important step of HPV infection. Fusion of a small protein domain to the N terminus greatly facilitates direct visualization of the cleavage product, revealing important characteristics of this critical process. Contrary to the current model, we found that cleavage is largely independent of cyclophilins, suggesting that cyclophilins act either in parallel to or downstream of furin to trigger exposure of a conserved N-terminal L2 epitope (RG-1) during infection. Based on this finding, we strongly caution against using L2 RG-1 epitope exposure as a convenient but indirect proxy of furin cleavage.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 764
Author(s):  
Jaroslav Nunvar ◽  
Lucie Pagacova ◽  
Zuzana Vojtechova ◽  
Nayara Trevisan Doimo de Azevedo ◽  
Jana Smahelova ◽  
...  

Squamous cell carcinomas (SCCs) in the anogenital and head and neck regions are associated with high-risk types of human papillomaviruses (HR-HPV). Deregulation of miRNA expression is an important contributor to carcinogenesis. This study aimed to pinpoint commonly and uniquely deregulated miRNAs in cervical, anal, vulvar, and tonsillar tumors of viral or non-viral etiology, searching for a common set of deregulated miRNAs linked to HPV-induced carcinogenesis. RNA was extracted from tumors and nonmalignant tissues from the same locations. The miRNA expression level was determined by next-generation sequencing. Differential expression of miRNAs was calculated, and the patterns of miRNA deregulation were compared between tumors. The total of deregulated miRNAs varied between tumors of different locations by two orders of magnitude, ranging from 1 to 282. The deregulated miRNA pool was largely tumor-specific. In tumors of the same location, a low proportion of miRNAs were exclusively deregulated and no deregulated miRNA was shared by all four types of HPV-positive tumors. The most significant overlap of deregulated miRNAs was found between tumors which differed in location and HPV status (HPV-positive cervical tumors vs. HPV-negative vulvar tumors). Our results imply that HPV infection does not elicit a conserved miRNA deregulation in SCCs.


Sign in / Sign up

Export Citation Format

Share Document