scholarly journals Growth-Adaptive Mutations in the Ebola Virus Makona Glycoprotein Alter Different Steps in the Virus Entry Pathway

2018 ◽  
Vol 92 (19) ◽  
Author(s):  
John B. Ruedas ◽  
Catherine E. Arnold ◽  
Gustavo Palacios ◽  
John H. Connor

ABSTRACTTheZaire ebolavirus(EBOV) glycoprotein (GP) is cleaved into two subunits (GP1 and GP2) that are both required for virus attachment and entry into cells. Sequence changes in the GP have been proposed to increase pathogenesis and to alter virus growth properties. Mutations in GP acquired during EBOV tissue culture passage have also been reported to change virus growth properties. Here, we report the isolation of six amino acid mutations in EBOV GP that spontaneously appeared during recovery and passage of an EBOV-Makona GP-pseudotyped vesicular stomatitis virus (VSV), two of which also occur during passage of EBOV clinical isolates in tissue culture. Each of the six mutations resulted in increased virus growth in monkey and human cell lines. All mutations are located in the GP2 fusion subunit and increase entry kinetics of EBOV virus-like particles (VLPs). The gain-of-entry function mapped to two mechanistic phenotypes. Mutations in heptad repeat 1 (HR1) decreased the requirement for cathepsin B activity for viral infection. Mutations directly within the fusion loop increased entry kinetics without altering the cathepsin B dependence. Several mutations in the fusion loop were substitutions of residues present in other ebolavirus glycoproteins, illustrating the evolutionary paths for maintaining an optimally functioning fusion loop under selection pressure.IMPORTANCEZaire ebolavirus(EBOV) is the causative agent of the highly lethal Ebola virus disease and poses a significant threat to the global health community. Approved antivirals against EBOV are lacking; however, promising therapies targeting the EBOV glycoprotein are being developed. Efficacy testing of these candidate therapeutics relies on EBOV laboratory stocks, which when grown in tissue culture may acquire mutations in the glycoprotein. These mutations can produce inaccurate results in therapeutic testing. Until recently, distinguishing between tissue culture mutations and naturally occurring polymorphisms in EBOV GP was difficult in the absence of consensus clinical GP sequences. Here, we utilize recombinant VSV (rVSV) pseudotyped with the consensus clinical EBOV Makona GP to identify several mutations that have emerged or have potential to emerge in EBOV GP during tissue culture passage. Identifying these mutations informs the EBOV research community as to which mutations may arise during preparation of laboratory virus stocks.

2017 ◽  
Vol 91 (15) ◽  
Author(s):  
John B. Ruedas ◽  
Jason T. Ladner ◽  
Chelsea R. Ettinger ◽  
Suryaram Gummuluru ◽  
Gustavo Palacios ◽  
...  

ABSTRACT Ebolaviruses have a surface glycoprotein (GP1,2) that is required for virus attachment and entry into cells. Mutations affecting GP1,2 functions can alter virus growth properties. We generated a recombinant vesicular stomatitis virus encoding Ebola virus Makona variant GP1,2 (rVSV-MAK-GP) and observed emergence of a T544I mutation in the Makona GP1,2 gene during tissue culture passage in certain cell lines. The T544I mutation emerged within two passages when VSV-MAK-GP was grown on Vero E6, Vero, and BS-C-1 cells but not when it was passaged on Huh7 and HepG2 cells. The mutation led to a marked increase in virus growth kinetics and conferred a robust growth advantage over wild-type rVSV-MAK-GP on Vero E6 cells. Analysis of complete viral genomes collected from patients in western Africa indicated that this mutation was not found in Ebola virus clinical samples. However, we observed the emergence of T544I during serial passage of various Ebola Makona isolates on Vero E6 cells. Three independent isolates showed emergence of T544I from undetectable levels in nonpassaged virus or virus passaged once to frequencies of greater than 60% within a single passage, consistent with it being a tissue culture adaptation. Intriguingly, T544I is not found in any Sudan, Bundibugyo, or Tai Forest ebolavirus sequences. Furthermore, T544I did not emerge when we serially passaged recombinant VSV encoding GP1,2 from these ebolaviruses. This report provides experimental evidence that the spontaneous mutation T544I is a tissue culture adaptation in certain cell lines and that it may be unique for the species Zaire ebolavirus. IMPORTANCE The Ebola virus (Zaire) species is the most lethal species of all ebolaviruses in terms of mortality rate and number of deaths. Understanding how the Ebola virus surface glycoprotein functions to facilitate entry in cells is an area of intense research. Recently, three groups independently identified a polymorphism in the Ebola glycoprotein (I544) that enhanced virus entry, but they did not agree in their conclusions regarding its impact on pathogenesis. Our findings here address the origins of this polymorphism and provide experimental evidence showing that it is the result of a spontaneous mutation (T544I) specific to tissue culture conditions, suggesting that it has no role in pathogenesis. We further show that this mutation may be unique to the species Zaire ebolavirus, as it does not occur in Sudan, Bundibugyo, and Tai Forest ebolaviruses. Understanding the mechanism behind this mutation can provide insight into functional differences that exist in culture conditions and among ebolavirus glycoproteins.


PLoS ONE ◽  
2016 ◽  
Vol 11 (3) ◽  
pp. e0152527 ◽  
Author(s):  
Jinwoo Lee ◽  
Sonia M. Gregory ◽  
Elizabeth A. Nelson ◽  
Judith M. White ◽  
Lukas K. Tamm

1971 ◽  
Vol 34 (3) ◽  
pp. 341-348 ◽  
Author(s):  
Jans Muller ◽  
John Mealey

✓ A solid, extrinsic hemangiopericytoma of the cerebellopontine angle was studied histologically and by means of tissue culture. The explanted tumor cells formed classic meningiomatous whorls indicative of the meningeal derivation of this neoplasm. Whorls were entirely absent in the histological preparations, however. The cases reported under the diagnosis of intracranial hemangiopericytoma and angioblastic meningioma have been reviewed; no valid histological distinction between these two types could be made.


2017 ◽  
Vol 114 (38) ◽  
pp. E7987-E7996 ◽  
Author(s):  
Jinwoo Lee ◽  
David A. Nyenhuis ◽  
Elizabeth A. Nelson ◽  
David S. Cafiso ◽  
Judith M. White ◽  
...  

Ebolavirus (EBOV), an enveloped filamentous RNA virus causing severe hemorrhagic fever, enters cells by macropinocytosis and membrane fusion in a late endosomal compartment. Fusion is mediated by the EBOV envelope glycoprotein GP, which consists of subunits GP1 and GP2. GP1 binds to cellular receptors, including Niemann-Pick C1 (NPC1) protein, and GP2 is responsible for low pH-induced membrane fusion. Proteolytic cleavage and NPC1 binding at endosomal pH lead to conformational rearrangements of GP2 that include exposing the hydrophobic fusion loop (FL) for insertion into the cellular target membrane and forming a six-helix bundle structure. Although major portions of the GP2 structure have been solved in pre- and postfusion states and although current models place the transmembrane (TM) and FL domains of GP2 in close proximity at critical steps of membrane fusion, their structures in membrane environments, and especially interactions between them, have not yet been characterized. Here, we present the structure of the membrane proximal external region (MPER) connected to the TM domain: i.e., the missing parts of the EBOV GP2 structure. The structure, solved by solution NMR and EPR spectroscopy in membrane-mimetic environments, consists of a helix-turn-helix architecture that is independent of pH. Moreover, the MPER region is shown to interact in the membrane interface with the previously determined structure of the EBOV FL through several critical aromatic residues. Mutation of aromatic and neighboring residues in both binding partners decreases fusion and viral entry, highlighting the functional importance of the MPER/TM–FL interaction in EBOV entry and fusion.


2019 ◽  
Vol 48 (1) ◽  
pp. 9-19 ◽  
Author(s):  
Sharmilla Ashokhan ◽  
Sujatha Ramasamy ◽  
Saiful Anuar Karsani ◽  
Rashidi Othman ◽  
Jamilah Syafawati Yaacob

Purpose The purpose of this study is to evaluate the content of bioactive pigments in coloured callus of Azadirachta indica and to understand the correlation between the callus colours with their bioactive constituents, antioxidant properties and cytotoxicity. These assessments will yield valuable insight into the use of in vitro-derived pigments for possible use as functional natural colourants. Design/methodology/approach In this study, the authors have successfully developed a protocol to produce leaf-derived callus of various colours with enhanced content of bioactive pigments in A. indica through plant tissue culture. Comparative analysis of the pigments content (chlorophyll, carotenoid, phenolics and anthocyanins) in the coloured callus was conducted, followed by evaluation of its bioactive properties. The antioxidant properties against 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radicals, ferric reducing antioxidant power and cytotox activities of the coloured callus extracts were also reported. Findings Callus of various colours were successfully produced in A. indica through plant tissue culture, and their valuable pigment content and bioactivity were evaluated. The green callus contained the highest amount of anthocyanin, followed by brown and cream callus. The total anthocyanin contents in both the green and brown callus was more than two-fold higher than that in cream callus. Contrasting observation was obtained for total phenolic content (TPC), where the TPC of cream callus was significantly higher than that in brown callus. Nevertheless, the green callus also exhibited the highest TPC. Green callus also contained the highest amount of total chlorophyll and carotenoid, as well as exhibited the highest antioxidant potential, and was found to be the only extract with active cytotox activity against SKOV-3 cells. Correlation analysis revealed that the excellent bioactivity exhibited by the coloured extracts was strongly correlated with the bioactive pigments present in the callus. Research limitations/implications The major bioactive compounds identified in the methanolic extracts of A. indica coloured callus are anthocyanins, phenolics, chlorophylls and carotenoids. Future research work should include improvements in the extraction and identification methods, which may lead to detection and determination of other compounds that could attribute to its bioactivity, to complement the findings of the current study. Practical implications This analysis provides valuable information on the application of plant tissue culture as an alternative source for sustainable production of major pigments with medicinal benefits in A. indica for possible use as functional natural colourants. Originality/value A comparative study on bioactive pigment production in coloured callus from A. indica leaves and its antioxidant potential and cytotoxicity is original. To the best of the authors’ knowledge, this is the first report detailing a comparative evaluation on the production of coloured callus in A. indica and its relative biochemical composition and bioactive properties.


1952 ◽  
Vol 30 (3) ◽  
pp. 231-245 ◽  
Author(s):  
Joan C. Thicke ◽  
Darline Duncan ◽  
William Wood ◽  
A. E. Franklin ◽  
A. J. Rhodes

This paper presents observations on the growth of Lansing poliomyelitis virus in fluid cultures of various human embryonic and adult tissues. The evidence suggests that viral multiplication has occurred in cultures of monkey testis, human embryonic kidney, and mixtures of brain and cord. Satisfactory virus growth has been obtained particularly in cultures containing human embryonic brain and cord. Virus is present in tissue culture fluids in which the original inoculum has been diluted 10−33.3 by subcultivation. Preliminary observations suggest that a synthetic medium (Mixture 199) devised by Morgan, Morton, and Parker is superior to Hanks–Simms solution as a nutritive medium in such cultures. The cytopathogenic effect of the virus, as revealed by pH determinations and cell morphology, has been noted, although a characteristic pH differential between virus infected and control flasks was not commonly observed. Attempts to grow the virus on a larger scale in Kolle flasks are described.


2015 ◽  
Vol 54 (1) ◽  
pp. 49-58 ◽  
Author(s):  
Jie Liu ◽  
Caroline Ochieng ◽  
Steve Wiersma ◽  
Ute Ströher ◽  
Jonathan S. Towner ◽  
...  

Acute febrile illness (AFI) is associated with substantial morbidity and mortality worldwide, yet an etiologic agent is often not identified. Convalescent-phase serology is impractical, blood culture is slow, and many pathogens are fastidious or impossible to cultivate. We developed a real-time PCR-based TaqMan array card (TAC) that can test six to eight samples within 2.5 h from sample to results and can simultaneously detect 26 AFI-associated organisms, including 15 viruses (chikungunya, Crimean-Congo hemorrhagic fever [CCHF] virus, dengue, Ebola virus, Bundibugyo virus, Sudan virus, hantaviruses [Hantaan and Seoul], hepatitis E, Marburg, Nipah virus, o'nyong-nyong virus, Rift Valley fever virus, West Nile virus, and yellow fever virus), 8 bacteria (Bartonellaspp.,Brucellaspp.,Coxiella burnetii,Leptospiraspp.,Rickettsiaspp.,Salmonella entericaandSalmonella entericaserovar Typhi, andYersinia pestis), and 3 protozoa (Leishmaniaspp.,Plasmodiumspp., andTrypanosoma brucei). Two extrinsic controls (phocine herpesvirus 1 and bacteriophage MS2) were included to ensure extraction and amplification efficiency. Analytical validation was performed on spiked specimens for linearity, intra-assay precision, interassay precision, limit of detection, and specificity. The performance of the card on clinical specimens was evaluated with 1,050 blood samples by comparison to the individual real-time PCR assays, and the TAC exhibited an overall 88% (278/315; 95% confidence interval [CI], 84% to 92%) sensitivity and a 99% (5,261/5,326, 98% to 99%) specificity. This TaqMan array card can be used in field settings as a rapid screen for outbreak investigation or for the surveillance of pathogens, including Ebola virus.


2017 ◽  
Vol 91 (14) ◽  
Author(s):  
Michaela J. Schultz ◽  
Sharon Isern ◽  
Scott F. Michael ◽  
Ronald B. Corley ◽  
John H. Connor ◽  
...  

ABSTRACT Mosquito-borne arboviruses are a major source of human disease. One strategy to reduce arbovirus disease is to reduce the mosquito's ability to transmit virus. Mosquito infection with the bacterial endosymbiont Wolbachia pipientis wMel is a novel strategy to reduce Aedes mosquito competency for flavivirus infection. However, experiments investigating cyclic environmental temperatures have shown a reduction in maternal transmission of wMel, potentially weakening the integration of this strain into a mosquito population relative to that of other Wolbachia strains. Consequently, it is important to investigate additional Wolbachia strains. All Zika virus (ZIKV) suppression studies are limited to the wMel Wolbachia strain. Here we show ZIKV inhibition by two different Wolbachia strains: wAlbB (isolated from Aedes albopictus mosquitoes) and wStri (isolated from the planthopper Laodelphax striatellus) in mosquito cells. Wolbachia strain wStri inhibited ZIKV most effectively. Single-cycle infection experiments showed that ZIKV RNA replication and nonstructural protein 5 translation were reduced below the limits of detection in wStri-containing cells, demonstrating early inhibition of virus replication. ZIKV replication was rescued when Wolbachia was inhibited with a bacteriostatic antibiotic. We observed a partial rescue of ZIKV growth when Wolbachia-infected cells were supplemented with cholesterol-lipid concentrate, suggesting competition for nutrients as one of the possible mechanisms of Wolbachia inhibition of ZIKV. Our data show that wAlbB and wStri infection causes inhibition of ZIKV, making them attractive candidates for further in vitro mechanistic and in vivo studies and future vector-centered approaches to limit ZIKV infection and spread. IMPORTANCE Zika virus (ZIKV) has swiftly spread throughout most of the Western Hemisphere. This is due in large part to its replication in and spread by a mosquito vector host. There is an urgent need for approaches that limit ZIKV replication in mosquitoes. One exciting approach for this is to use a bacterial endosymbiont called Wolbachia that can populate mosquito cells and inhibit ZIKV replication. Here we show that two different strains of Wolbachia, wAlbB and wStri, are effective at repressing ZIKV in mosquito cell lines. Repression of virus growth is through the inhibition of an early stage of infection and requires actively replicating Wolbachia. Our findings further the understanding of Wolbachia viral inhibition and provide novel tools that can be used in an effort to limit ZIKV replication in the mosquito vector, thereby interrupting the transmission and spread of the virus.


Sign in / Sign up

Export Citation Format

Share Document