scholarly journals Evaluation of Replication and Pathogenicity of Avian Influenza A H7 Subtype Viruses in a Mouse Model

2007 ◽  
Vol 81 (19) ◽  
pp. 10558-10566 ◽  
Author(s):  
Tomy Joseph ◽  
Josephine McAuliffe ◽  
Bin Lu ◽  
Hong Jin ◽  
George Kemble ◽  
...  

ABSTRACT Avian influenza A H7 subtype viruses pose a significant threat to human health because of their ability to transmit directly from domestic poultry to humans and to cause disease and, sometimes, death. Although it is important to develop vaccines against viruses of this subtype, very limited information is available on the immune response and pathogenesis of H7 viruses in animal models such as mice and ferrets. Ten H7 viruses were selected for possible vaccine development on the basis of their phylogenetic relationships and geographical locations. The virulence of the 10 viruses for mice and the immunogenicity of the viruses in mice and ferrets were evaluated to study the extent of antigenic relatedness and the level of cross-reactivity of antibodies. Most of the viruses showed similar patterns of cross-reactivity with mouse and ferret antisera. The Eurasian viruses elicited broadly cross-reactive antibodies that neutralized viruses from both Eurasian and North American lineages, but the converse was not true. A subset of the viruses was also evaluated for the ability to replicate and cause disease in BALB/c mice following intranasal administration. H7 subtype viruses were able to infect mice without adaptation and manifested different levels of lethality and kinetics of replication. On the basis of phylogenetic data, induction of broadly cross-neutralizing antibodies in mouse and ferret antisera, and their ability to replicate in mice, we have selected A/Netherlands/219/03 (subtype H7N7) and A/chicken/BC/CN-7/04 (subtype H7N3) viruses for vaccine development. The mouse model can be used for the preclinical evaluation of these vaccines against H7 subtype viruses.

2021 ◽  
pp. 104063872110275
Author(s):  
Yixin Xiao ◽  
Fan Yang ◽  
Fumin Liu ◽  
Linfang Cheng ◽  
Hangping Yao ◽  
...  

Avian influenza A(H5) viruses (avian IAVs) pose a major threat to the economy and public health. We developed an antigen-ELISA (ag-ELISA) and a colloidal gold–based immunochromatographic strip for the rapid detection of avian A(H5) viruses. Both detection methods displayed no cross-reactivity with other viruses (e.g., other avian IAVs, infectious bursal disease virus, Newcastle disease virus, infectious bronchitis virus, avian paramyxovirus). The ag-ELISA was sensitive down to 0.5 hemagglutinin (HA) units/100 µL of avian A(H5) viruses and 7.5 ng/mL of purified H5 HA proteins. The immunochromatographic strip was sensitive down to 1 HA unit/100 µL of avian A(H5) viruses. Both detection methods exhibited good reproducibility with CVs < 10%. For 200 random poultry samples, the sensitivity and specificity of the ag-ELISA were 92.6% and 98.8%, respectively, and for test strips were 88.9% and 98.3%, respectively. Both detection methods displayed high specificity, sensitivity, and stability, making them suitable for rapid detection and field investigation of avian A(H5) viruses.


2012 ◽  
Vol 20 (2) ◽  
pp. 140-145 ◽  
Author(s):  
Kyu-Jun Lee ◽  
Jun-Gu Choi ◽  
Hyun-Mi Kang ◽  
Kwang-Il Kim ◽  
Choi-Kyu Park ◽  
...  

ABSTRACTOutbreaks of avian influenza A virus infection, particularly the H5N1 strains that have affected birds and some humans for the past 15 years, have highlighted the need for increased surveillance and disease control. Such measures require diagnostic tests to detect and characterize the different subtypes of influenza virus. In the current study, a simple method for producing reference avian influenza virus antisera to be used in diagnostic tests was developed. Antisera of nine avian influenza A virus neuraminidases (NA) used for NA subtyping were produced using a recombinant baculovirus. The recombinant NA (rNA) proteins were expressed in Sf9 insect cells and inoculated intramuscularly into specific-pathogen-free chickens with the ISA70 adjuvant. The NA inhibition antibody titers of the rNA antiserum were in the ranges of 5 to 8 and 6 to 9 log2units after the primary and boost immunizations, respectively. The antisera were subtype specific, showing low cross-reactivity against every other NA subtype using the conventional thiobarbituric acid NA inhibition assay. These results suggest that this simple method for producing reference NA antisera without purification may be useful for the diagnosis and surveillance of influenza virus.


2021 ◽  
Vol 12 ◽  
Author(s):  
Minjin Kim ◽  
Yucheol Cheong ◽  
Jinhee Lee ◽  
Jongkwan Lim ◽  
Sanguine Byun ◽  
...  

Influenza virus infections can cause a broad range of symptoms, form mild respiratory problems to severe and fatal complications. While influenza virus poses a global health threat, the frequent antigenic change often significantly compromises the protective efficacy of seasonal vaccines, further increasing the vulnerability to viral infection. Therefore, it is in great need to employ strategies for the development of universal influenza vaccines (UIVs) which can elicit broad protection against diverse influenza viruses. Using a mouse infection model, we examined the breadth of protection of the caspase-triggered live attenuated influenza vaccine (ctLAIV), which was self-attenuated by the host caspase-dependent cleavage of internal viral proteins. A single vaccination in mice induced a broad reactive antibody response against four different influenza viruses, H1 and rH5 (HA group 1) and H3 and rH7 subtypes (HA group 2). Notably, despite the lack of detectable neutralizing antibodies, the vaccination provided heterosubtypic protection against the lethal challenge with the viruses. Sterile protection was confirmed by the complete absence of viral titers in the lungs and nasal turbinates after the challenge. Antibody-dependent cellular cytotoxicity (ADCC) activities of non-neutralizing antibodies contributed to cross-protection. The cross-protection remained robust even after in vivo depletion of T cells or NK cells, reflecting the strength and breadth of the antibody-dependent effector function. The robust mucosal secretion of sIgA reflects an additional level of cross-protection. Our data show that the host-restricted designer vaccine serves an option for developing a UIV, providing pan-influenza A protection against both group 1 and 2 influenza viruses. The present results of potency and breadth of protection from wild type and reassortant viruses addressed in the mouse model by single immunization merits further confirmation and validation, preferably in clinically relevant ferret models with wild type challenges.


2008 ◽  
Vol 83 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Zhongying Chen ◽  
Celia Santos ◽  
Amy Aspelund ◽  
Laura Gillim-Ross ◽  
Hong Jin ◽  
...  

ABSTRACT Avian influenza A virus A/teal/HK/W312/97 (H6N1) possesses seven gene segments that are highly homologous to those of highly pathogenic human influenza H5N1 viruses, suggesting that a W312-like H6N1 virus might have been involved in the generation of the A/HK/97 H5N1 viruses. The continuous circulation and reassortment of influenza H6 subtype viruses in birds highlight the need to develop an H6 vaccine to prevent potential influenza pandemics caused by the H6 viruses. Based on the serum antibody cross-reactivity data obtained from 14 different H6 viruses from Eurasian and North American lineages, A/duck/HK/182/77, A/teal/HK/W312/97, and A/mallard/Alberta/89/85 were selected to produce live attenuated H6 candidate vaccines. Each of the H6 vaccine strains is a 6:2 reassortant ca virus containing HA and NA gene segments from an H6 virus and the six internal gene segments from cold-adapted A/Ann Arbor/6/60 (AA ca), the master donor virus that is used to make live attenuated influenza virus FluMist (intranasal) vaccine. All three H6 vaccine candidates exhibited phenotypic properties of temperature sensitivity (ts), ca, and attenuation (att) conferred by the internal gene segments from AA ca. Intranasal administration of a single dose of the three H6 ca vaccine viruses induced neutralizing antibodies in mice and ferrets and fully protected mice and ferrets from homologous wild-type (wt) virus challenge. Among the three H6 vaccine candidates, the A/teal/HK/W312/97 ca virus provided the broadest cross-protection against challenge with three antigenically distinct H6 wt viruses. These data support the rationale for further evaluating the A/teal/HK/W312/97 ca vaccine in humans.


2018 ◽  
Vol 92 (11) ◽  
Author(s):  
M. Justin Iampietro ◽  
Rafael A. Larocca ◽  
Nicholas M. Provine ◽  
Peter Abbink ◽  
Zi Han Kang ◽  
...  

ABSTRACT Adenovirus (Ad) vectors are being investigated as vaccine candidates, but baseline antivector immunity exists in human populations to both human Ad (HuAd) and chimpanzee Ad (ChAd) vectors. In this study, we investigated the immunogenicity and cross-reactivity of a panel of recently described rhesus adenoviral (RhAd) vectors. RhAd vectors elicited T cells with low exhaustion markers and robust anamnestic potential. Moreover, RhAd vector immunogenicity was unaffected by high levels of preexisting anti-HuAd immunity. Both HuAd/RhAd and RhAd/RhAd prime-boost vaccine regimens were highly immunogenic, despite a degree of cross-reactive neutralizing antibodies (NAbs) between phylogenetically related RhAd vectors. We observed extensive vector-specific cross-reactive CD4 T cell responses and more limited CD8 T cell responses between RhAd and HuAd vectors, but the impact of vector-specific cellular responses was far less than that of vector-specific NAbs. These data suggest the potential utility of RhAd vectors and define novel heterologous prime-boost strategies for vaccine development. IMPORTANCE To date, most adenoviral vectors developed for vaccination have been HuAds from species B, C, D, and E, and human populations display moderate to high levels of preexisting immunity. There is a clinical need for new adenoviral vectors that are not hindered by preexisting immunity. Moreover, the development of RhAd vector vaccines expands our ability to vaccinate against multiple pathogens in a population that may have received other HuAd or ChAd vectors. We evaluated the immunogenicity and cross-reactivity of RhAd vectors, which belong to the poorly described adenovirus species G. These vectors induced robust cellular and humoral immune responses and were not hampered by preexisting anti-HuAd vector immunity. Such properties make RhAd vectors attractive as potential vaccine vectors.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Shana Priscila Coutinho Barroso ◽  
Ana Clara Vicente dos Santos ◽  
Patrícia Souza dos Santos ◽  
José Nelson dos Santos Silva Couceiro ◽  
Davis Fernandes Ferreira ◽  
...  

Vaccines are a recommended strategy for controlling influenza A infections in humans and animals. Here, we describe the effects of hydrostatic pressure on the structure, morphology and functional characteristics of avian influenza A H3N8 virus. The effect of hydrostatic pressure for 3 h on H3N8 virus revealed that the particles were resistant to this condition, and the virus displayed only a discrete conformational change. We found that pressure of 3 kbar applied for 6 h was able to inhibit haemagglutination and infectivity while virus replication was no longer observed, suggesting that full virus inactivation occurred at this point. However, the neuraminidase activity was not affected at this approach suggesting the maintenance of neutralizing antibody epitopes in this key antigen. Our data bring important information for the area of structural virology of enveloped particles and support the idea of applying pressure-induced inactivation as a tool for vaccine production.


2020 ◽  
Author(s):  
Fatima Amanat ◽  
Shirin Strohmeier ◽  
Raveen Rathnasinghe ◽  
Michael Schotsaert ◽  
Lynda Coughlan ◽  
...  

AbstractThe spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as the prime target for vaccine development. The spike protein mediates both binding to host cells and membrane fusion and is also so far the only known viral target of neutralizing antibodies. Coronavirus spike proteins are large trimers that are relatively instable, a feature that might be enhanced by the presence of a polybasic cleavage site in the SARS-CoV-2 spike. Exchange of K986 and V987 to prolines has been shown to stabilize the trimers of SARS-CoV-1 and the Middle Eastern respiratory syndrome coronavirus spikes. Here, we test multiple versions of a soluble spike protein for their immunogenicity and protective effect against SARS-CoV-2 challenge in a mouse model that transiently expresses human angiotensin converting enzyme 2 via adenovirus transduction. Variants tested include spike protein with a deleted polybasic cleavage site, the proline mutations, a combination thereof, as well as the wild type protein. While all versions of the protein were able to induce neutralizing antibodies, only the antigen with both a deleted cleavage site and the PP mutations completely protected from challenge in this mouse model.ImportanceA vaccine for SARS-CoV-2 is urgently needed. A better understanding of antigen design and attributes that vaccine candidates need to have to induce protective immunity is of high importance. The data presented here validates the choice of antigens that contain the PP mutation and suggests that deletion of the polybasic cleavage site could lead to a further optimized design.


Vaccines ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 46 ◽  
Author(s):  
Rory de Vries ◽  
Sander Herfst ◽  
Mathilde Richard

Influenza A viruses can infect a wide range of hosts, creating opportunities for zoonotic transmission, i.e., transmission from animals to humans, and placing the human population at constant risk of potential pandemics. In the last hundred years, four influenza A virus pandemics have had a devastating effect, especially the 1918 influenza pandemic that took the lives of at least 40 million people. There is a constant risk that currently circulating avian influenza A viruses (e.g., H5N1, H7N9) will cause a new pandemic. Vaccines are the cornerstone in preparing for and combating potential pandemics. Despite exceptional advances in the design and development of (pre-)pandemic vaccines, there are still serious challenges to overcome, mainly caused by intrinsic characteristics of influenza A viruses: Rapid evolution and a broad host range combined with maintenance in animal reservoirs, making it near impossible to predict the nature and source of the next pandemic virus. Here, recent advances in the development of vaccination strategies to prepare against a pandemic virus coming from the avian reservoir will be discussed. Furthermore, remaining challenges will be addressed, setting the agenda for future research in the development of new vaccination strategies against potentially pandemic influenza A viruses.


Sign in / Sign up

Export Citation Format

Share Document