scholarly journals Novel Role for Interleukin-17 in Enhancing Type 1 Helper T Cell Immunity in the Female Genital Tract following Mucosal Herpes Simplex Virus 2 Vaccination

2017 ◽  
Vol 91 (23) ◽  
Author(s):  
Puja Bagri ◽  
Varun C. Anipindi ◽  
Philip V. Nguyen ◽  
Danielle Vitali ◽  
Martin R. Stämpfli ◽  
...  

ABSTRACT It is well established that interferon gamma (IFN-γ) production by CD4+ T cells is critical for antiviral immunity against herpes simplex virus 2 (HSV-2) genital infection. However, the role of interleukin-17A (IL-17A) production by CD4+ T cells in HSV-2 antiviral immunity is yet to be elucidated. Here we demonstrate that IL-17A plays an important role in enhancing antiviral T helper type 1 (Th1) responses in the female genital tract (FGT) and is essential for effective protection conferred by HSV-2 vaccination. While IL-17A did not play a critical role during primary genital HSV-2 infection, seen by lack of differences in susceptibility between IL-17A-deficient (IL-17A −/−) and wild-type (WT) C57BL/6 mice, it was critical for mediating antiviral responses after challenge/reexposure. Compared to WT mice, IL-17A −/− mice (i) infected intravaginally and reexposed or (ii) vaccinated intranasally and challenged intravaginally demonstrated poor outcomes. Following intravaginal HSV-2 reexposure or challenge, vaccinated IL-17A −/− mice had significantly higher mortality, greater disease severity, higher viral shedding, and higher levels of proinflammatory cytokines and chemokines in vaginal secretions. Furthermore, IL-17A −/− mice had impaired Th1 cell responses after challenge/reexposure, with significantly lower proportions of vaginal IFN-γ+ CD4+ T cells. The impaired Th1 cell responses in IL-17A −/− mice coincided with smaller populations of IFN-γ+ CD4+ tissue resident memory T (TRM) cells in the genital tract postimmunization. Taken together, these findings describe a novel role for IL-17A in regulating antiviral IFN-γ+ Th1 cell immunity in the vaginal tract. This strategy could be exploited to enhance antiviral immunity following HSV-2 vaccination. IMPORTANCE T helper type 1 (Th1) immunity, specifically interferon gamma (IFN-γ) production by CD4+ T cells, is critical for protection against genital herpesvirus (HSV-2) infection, and enhancing this response can potentially help improve disease outcomes. Our study demonstrated that interleukin-17A (IL-17A) plays an essential role in enhancing antiviral Th1 responses in the female genital tract (FGT). We found that in the absence of IL-17A, preexposed and vaccinated mice showed poor disease outcomes and were unable to overcome HSV-2 reexposure/challenge. IL-17A-deficient mice (IL-17A −/−) had smaller populations of IFN-γ+ CD4+ tissue resident memory T (TRM) cells in the genital tract postimmunization than did wild-type (WT) mice, which coincided with attenuated Th1 responses postchallenge. This has important implications for developing effective vaccines against HSV-2, as we propose that strategies inducing IL-17A in the genital tract may promote more effective Th1 cell immunity and better overall protection.

2020 ◽  
Vol 94 (9) ◽  
Author(s):  
Germán G. Gornalusse ◽  
Rogelio Valdez ◽  
Gabriella Fenkart ◽  
Lucia Vojtech ◽  
Lamar M. Fleming ◽  
...  

ABSTRACT Pharmacological HIV-1 reactivation to reverse latent infection has been extensively studied. However, HIV-1 reactivation also occurs naturally, as evidenced by occasional low-level viremia (“viral blips”) during antiretroviral treatment (ART). Clarifying where blips originate from and how they happen could provide clues to stimulate latency reversal more effectively and safely or to prevent viral rebound following ART cessation. We studied HIV-1 reactivation in the female genital tract, a dynamic anatomical target for HIV-1 infection throughout all disease stages. We found that primary endocervical epithelial cells from several women reactivated HIV-1 from latently infected T cells. The endocervical cells’ HIV-1 reactivation capacity further increased upon Toll-like receptor 3 stimulation with poly(I·C) double-stranded RNA or infection with herpes simplex virus 2 (HSV-2). Notably, acyclovir did not eliminate HSV-2-induced HIV-1 reactivation. While endocervical epithelial cells secreted large amounts of several cytokines and chemokines, especially tumor necrosis factor alpha (TNF-α), CCL3, CCL4, and CCL20, their HIV-1 reactivation capacity was almost completely blocked by TNF-α neutralization alone. Thus, immunosurveillance activities by columnar epithelial cells in the endocervix can cause endogenous HIV-1 reactivation, which may contribute to viral blips during ART or rebound following ART interruption. IMPORTANCE A reason that there is no universal cure for HIV-1 is that the virus can hide in the genome of infected cells in the form of latent proviral DNA. This hidden provirus is protected from antiviral drugs until it eventually reactivates to produce new virions. It is not well understood where in the body or how this reactivation occurs. We studied HIV-1 reactivation in the female genital tract, which is often the portal of HIV-1 entry and which remains a site of infection throughout the disease. We found that the columnar epithelial cells lining the endocervix, the lower part of the uterus, are particularly effective in reactivating HIV-1 from infected T cells. This activity was enhanced by certain microbial stimuli, including herpes simplex virus 2, and blocked by antibodies against the inflammatory cytokine TNF-α. Avoiding HIV-1 reactivation could be important for maintaining a functional HIV-1 cure when antiviral therapy is stopped.


2017 ◽  
Vol 10 (5) ◽  
pp. 1259-1269 ◽  
Author(s):  
C M Posavad ◽  
L Zhao ◽  
L Dong ◽  
L Jin ◽  
C E Stevens ◽  
...  

2012 ◽  
Vol 28 (11) ◽  
pp. 1524-1532 ◽  
Author(s):  
Richard E. Haaland ◽  
Sharon T. Sullivan ◽  
Tammy Evans-Strickfaden ◽  
Jeffrey L. Lennox ◽  
Clyde E. Hart

Vaccine ◽  
2010 ◽  
Vol 28 (34) ◽  
pp. 5582-5590 ◽  
Author(s):  
Catherine Hervouet ◽  
Carmelo Luci ◽  
Nicolas Çuburu ◽  
Magali Cremel ◽  
Selma Bekri ◽  
...  

2002 ◽  
Vol 48 (10) ◽  
pp. 886-894 ◽  
Author(s):  
Makiko Kobayashi ◽  
Hitoshi Takahashi ◽  
David N Herndon ◽  
Richard B Pollard ◽  
Fujio Suzuki

The effectiveness of a combination using IL-12 and soluble IL-4 receptor (sIL-4R) to treat severe infections of herpes simplex virus type 1 (HSV-1) and Candida albicans in thermally injured mice was investigated. Although sIL-4R decreased burn-associated type 2 T-cell responses, the effect of sIL-4R was minimal on the morbidity and mortality of thermally injured mice exposed to 250 times LD50of HSV-1 or 10 times LD50of C. albicans. Compared with 100% mortality in control mice, mortality for HSV-1 and C. albicans was 40 and 20%, respectively, in thermally injured mice that received IL-12 and sIL-4R in combination. After stimulation with anti-CD3 monoclonal antibody, splenic T cells from thermally injured mice exposed to large amounts of HSV-1 or C. albicans did not produce gamma interferon (IFN-γ) into their culture fluids. However, IFN-γ was produced by splenic T cells from thermally injured and infected mice treated with IL-12 and sIL-4R in combination. These results suggest that therapeutic treatment with a combination of IL-12 and sIL-4R may be effective by inducing type 1 T-cell responses in thermally injured mice exposed to large amounts of HSV-1 or C. albicans.Key words: burn, IL-12, soluble IL-4 receptor, herpesvirus, Candida albicans.


PLoS ONE ◽  
2014 ◽  
Vol 9 (6) ◽  
pp. e98593 ◽  
Author(s):  
Elisabeth Kleppa ◽  
Veron Ramsuran ◽  
Siphosenkosi Zulu ◽  
Gunn Hege Karlsen ◽  
Alfred Bere ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document