scholarly journals In Vivo Competence of Murine Cytomegalovirus under the Control of the Human Cytomegalovirus Major Immediate-Early Enhancer in the Establishment of Latency and Reactivation

2008 ◽  
Vol 82 (20) ◽  
pp. 10302-10307 ◽  
Author(s):  
Montse Gustems ◽  
Andreas Busche ◽  
Martin Messerle ◽  
Peter Ghazal ◽  
Ana Angulo

ABSTRACT The human cytomegalovirus (HCMV) major immediate-early enhancer has been postulated to play a pivotal role in the control of latency and reactivation. However, the absence of an animal model has obstructed a direct test of this hypothesis. Here we report on the establishment of an in vivo, experimentally tractable system for quantitatively investigating physiological functions of the HCMV enhancer. Using a neonate BALB/c mouse model, we show that a chimeric murine CMV under the control of the HCMV enhancer is competent in vivo, replicating in key organs of mice with acute CMV infection and exhibiting latency/reactivation features comparable for the most part to those of the parental and revertant viruses.

2022 ◽  
Author(s):  
Michael Valente ◽  
Nils Collinet ◽  
Thien-Phong Vu Manh ◽  
Karima Naciri ◽  
Gilles Bessou ◽  
...  

Plasmacytoid dendritic cells (pDC) were identified about 20 years ago, based on their unique ability to rapidly produce copious amounts of all subsets of type I and type III interferon (IFN-I/III) upon virus sensing, while being refractory to infection. Yet, the identity and physiological functions of pDC are still a matter of debate, in a large part due to their lack of specific expression of any single cell surface marker or gene that would allow to track them in tissues and to target them in vivo with high specificity and penetrance. Indeed, recent studies showed that previous methods that were used to identify or deplete pDC also targeted other cell types, including pDC-like cells and transitional DC (tDC) that were proposed to be responsible for all the antigen presentation ability previously attributed to steady state pDC. Hence, improving our understanding of the nature and in vivo choreography of pDC physiological functions requires the development of novel tools to unambiguously identify and track these cells, including in comparison to pDC-like cells and tDC. Here, we report successful generation of a pDC-reporter mouse model, by using an intersectional genetic strategy based on the unique co-expression of Siglech and Pacsin1 in pDC. This pDC-Tomato mouse strain allows specific ex vivo and in situ detection of pDC. Breeding them with Zbtb46GFP mice allowed side-by-side purification and transcriptional profiling by single cell RNA sequencing of bona fide pDC, pDC-like cells and tDC, in comparison to type 1 and 2 conventional DC (cDC1 and cDC2), both at steady state and during a viral infection, revealing diverging activation patterns of pDC-like cells and tDC. Finally, by breeding pDC-Tomato mice with Ifnb1EYFP mice, we determined the choreography of pDC recruitment to the micro-anatomical sites of viral replication in the spleen, with initially similar but later divergent behaviors of the pDC that engaged or not into IFN-I production. Our novel pDC-Tomato mouse model, and newly identified gene modules specific to combinations of DC types and activations states, will constitute valuable resources for a deeper understanding of the functional division of labor between DC types and its molecular regulation at homeostasis and during viral infections.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2355
Author(s):  
Alexis Aguiar ◽  
Melissa Galinato ◽  
Maite’ Bradley Silva ◽  
Bryant Toth ◽  
Michael A. McVoy ◽  
...  

Only a handful of cell types, including fibroblasts, epithelial, and endothelial cells, can support human cytomegalovirus (CMV) replication in vitro, in striking contrast to the situation in vivo. While the susceptibility of epithelial and endothelial cells to CMV infection is strongly modulated by their anatomical site of origin, multiple CMV strains have been successfully isolated and propagated on fibroblasts derived from different organs. As oral mucosal cells are likely involved in CMV acquisition, we sought to evaluate the ability of infant labial fibroblasts to support CMV replication, compared to that of commonly used foreskin and fetal lung fibroblasts. No differences were found in the proportion of cells initiating infection, or in the amounts of viral progeny produced after exposure to the fibroblast-adapted CMV strain AD169 or to the endothelial cell-adapted strain TB40/E. Syncytia formation was, however, significantly enhanced in infected labial and lung fibroblasts compared to foreskin-derived cells, and did not occur after infection with AD169. Together, these data indicate that fibroblast populations derived from different tissues are uniformly permissive to CMV infection but retain phenotypic differences of potential importance for infection-induced cell–cell fusion, and ensuing viral spread and pathogenesis in different organs.


2021 ◽  
Author(s):  
Saiaditya Badeti ◽  
Hsiang-chi Tseng ◽  
Peter Romanienko ◽  
Ghassan Yehia ◽  
Dongfang Liu

Abstract An animal model that can mimic the SARS-CoV-2 infection in humans is critical to understanding the newly emerged, rapidly spreading SARS-CoV-2 and development of therapeutic strategies. Studies show that the spike (S) proteins of SARS-CoV (SARS-CoV-S-1-S) and SARS-CoV-2 (SARS-CoV-2-S) bind to human angiotensin-converting enzyme 2 (hACE2, a well-recognized, functional receptor for SARS-CoV and SARS-CoV-2) to mediate viral entry. Several hACE2 transgenic (hACE2Tg) mouse models are being widely used, which is clearly invaluable. However, the hACE2Tg mouse model cannot fully explain: 1) low expression of ACE2 observed in human lung and heart, but lung or heart failure occurs frequently in severe COVID-19 patients); 2) low expression of ACE2 on immune cells, but lymphocytopenia occurs frequently in COVID-19 patients; and 3) hACE2Tg mice do not develop strong clinical disease following SARS-CoV-2 infection in contrast to SARS-CoV-1. Moreover, one of most outstanding features of coronaviruses is the diversity of receptor usage, which includes the newly proposed human CD147 (hCD147) as a receptor for SARS-CoV-2-S. It is still debatable whether CD147 can serve as a functional receptor for SARS-CoV-2 infection or entry. Here we successfully generated a hCD147Tg mouse model in the NOD-scid IL2Rgammanull (NSG) background. In this hCD147Tg-NSG mouse model, the hCD147 genetic sequence was placed following the endogenous mouse promoter for mouse CD147 (mCD147), which creates an in vivo model that may better recapitulate physiological expression of CD147 proteins at the molecular level compared to the existing and well-studied K18-hACE2-B6 model. In addition, the hCD147Tg-NSG mouse model allows further study of SARS-CoV-2 in the immunodeficiency condition which may assist our understanding of this virus in the context of high-risk populations with immunosuppressed conditions. The hCD147Tg-NSG mouse mode can serve as an additional animal model for interrogate whether CD147 serve as an independent functional receptor or accessory receptor for SARS-CoV-2 entry and immune responses.


2000 ◽  
Vol 11 (1) ◽  
pp. 51-59 ◽  
Author(s):  
Olaf Weber ◽  
Jürgen Reefschläger ◽  
Helga Rübsamen-Waigmann ◽  
Siegfried Raddatz ◽  
Matthias Hesseling ◽  
...  

Novel peptide aldehydes (PAs) were identified as potent inhibitors of human cytomegalovirus (HCMV) in vitro. Although these compounds were highly effective against HCMV, they did not exhibit any activity against murine cytomegalovirus (MCMV). The purpose of this study was to test the antiviral activity of PA 8 as a representative of this novel class of inhibitors against HCMV in vivo. Because of the strict species specificity of HCMV we had to use two artificial animal models. In the first model, HCMV-infected human cells were entrapped into agarose plugs and transplanted into mice. In the second model, SCID mice were transplanted with human tissues that were subsequently infected with a clinical isolate of HCMV. In these two models the antiviral activity of PA 8 was clearly demonstrated, ganciclovir only being slightly superior in its in vivo antiviral activity.


2019 ◽  
Vol 14 (8) ◽  
pp. 545-560 ◽  
Author(s):  
Jessica Carter ◽  
Christine I Alston ◽  
Jay Oh ◽  
Lauren-Ashley Duncan ◽  
Judee Grace Esquibel Nemeno ◽  
...  

Human cytomegalovirus (HCMV) generates a significant clinical burden worldwide, particularly among the immune compromised. In approximately 30% of untreated HIV/AIDS patients without access or sufficient response to antiretroviral therapies, for example, HCMV causes a sight-threatening retinitis. To study the mechanisms of AIDS-related HCMV retinitis, our lab has for many years used a mouse model in which a mixture of mouse retroviruses induces murine AIDS after approximately 10 weeks, rendering otherwise resistant mice susceptible to opportunistic pathogens. This immunodeficiency combined with subretinal inoculation of murine cytomegalovirus yields a reproducible model of the human disease, facilitating the discovery of many clinically relevant virologic and immunologic mechanisms of retinal destruction which we summarize in this review.


2007 ◽  
Vol 81 (24) ◽  
pp. 13761-13770 ◽  
Author(s):  
Amy H. Buck ◽  
Javier Santoyo-Lopez ◽  
Kevin A. Robertson ◽  
Diwakar S. Kumar ◽  
Martin Reczko ◽  
...  

ABSTRACT The prevalence and importance of microRNAs (miRNAs) in viral infection are increasingly relevant. Eleven miRNAs were previously identified in human cytomegalovirus (HCMV); however, miRNA content in murine CMV (MCMV), which serves as an important in vivo model for CMV infection, has not previously been examined. We have cloned and characterized 17 novel miRNAs that originate from at least 12 precursor miRNAs in MCMV and are not homologous to HCMV miRNAs. In parallel, we applied a computational analysis, using a support vector machine approach, to identify potential precursor miRNAs in MCMV. Four of the top 10 predicted precursor sequences were cloned in this study, and the combination of computational and cloning analysis demonstrates that MCMV has the capacity to encode miRNAs clustered throughout the genome. On the basis of drug sensitivity experiments for resolving the kinetic class of expression, we show that the MCMV miRNAs are both early and late gene products. Notably, the MCMV miRNAs occur on complementary strands of the genome in specific regions, a feature which has not previously been observed for viral miRNAs. One cluster of miRNAs occurs in close proximity to the 5′ splice site of the previously identified 7.2-kb stable intron, implying a variety of potential regulatory mechanisms for MCMV miRNAs.


1993 ◽  
Vol 13 (2) ◽  
pp. 1238-1250 ◽  
Author(s):  
K M Klucher ◽  
M Sommer ◽  
J T Kadonaga ◽  
D H Spector

To define mechanistically how the human cytomegalovirus (HCMV) major immediate-early (IE) proteins induce early-gene transcription, the IE1 72-kDa protein, the IE2 55-kDa protein, and the IE2 86-kDa protein were analyzed for their ability to activate transcription from an HCMV early promoter in vivo and in vitro. In transient-expression assays in U373MG astrocytoma/glioblastoma and HeLa cells, only the IE2 86-kDa protein was able to activate the HCMV early promoter to high levels. In HeLa cells, the IE1 72-kDa protein was able to activate the promoter to a low but detectable level, and the level of promoter activity observed in response to the IE2 86-kDa protein was increased synergistically following cotransfection of the constructs expressing both IE proteins. To examine the interaction of the HCMV IE proteins with the RNA polymerase II transcription machinery, we assayed the ability of Escherichia coli-synthesized proteins to activate the HCMV early promoter in nuclear extracts prepared from U373MG cells, HeLa cells, and Drosophila embryos. The results of the in vitro experiments correlated well with those obtained in vivo. The basal activity of the promoter was minimal in both the HeLa and U373MG extracts but was stimulated 6- to 10-fold by the IE2 86-kDa protein. With a histone H1-deficient extract from Drosophila embryos, the HCMV early promoter was quite active and was stimulated two- to fourfold by the IE2 86-kDa protein. Addition of histone H1 at 1 molecule per 40 to 50 bp of DNA template significantly repressed basal transcription from this promoter. However, the IE2 86-kDa protein, but none of the other IE proteins, was able to counteract the H1-mediated repression and stimulate transcription at least 10- to 20-fold. The promoter specificity of the activation was demonstrated by the inability of the IE2 86-kDa protein to activate the Drosophila Krüppel promoter in either the presence or absence of histone H1. These results suggest that one mechanism of transcription activation by the IE2 86-kDa protein involves antirepression.


2000 ◽  
Vol 74 (1) ◽  
pp. 513-517 ◽  
Author(s):  
Audrey Esclatine ◽  
Michel Lemullois ◽  
Alain L. Servin ◽  
Anne-Marie Quero ◽  
Monique Geniteau-Legendre

ABSTRACT Human cytomegalovirus (CMV) causes severe disease in immunosuppressed patients and notably infects the gastrointestinal tract. To understand the interaction of CMV with intestinal epithelial cells, which are highly susceptible to CMV infection in vivo, we used the intestinal epithelial cell line Caco-2 and demonstrated that CMV enters predominantly through the basolateral surface of polarized Caco-2 cells. As shown by expression of all three classes of CMV proteins and by visualization of nucleocapsids by transmission electron microscopy, both poorly and fully differentiated Caco-2 cells were permissive to CMV replication. However, infection failed to produce infectious particles in Caco-2 cells, irrespective of the state of differentiation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4879-4879
Author(s):  
Myoung Woo Lee ◽  
Hye Jin Kim ◽  
Dae Seong Kim ◽  
Meong Hi Son ◽  
Soo Hyun Lee ◽  
...  

Abstract Abstract 4879 Background. A hematological malignant animal model is an essential tool for evaluating efficacy of anti-cancer drugs and elucidating underlying mechanism of leukemogenesis. Intraperitoneal (IP) and intravenous (IV) xenograft of acute lymphoblastic leukemia (ALL) cells have limited capacity as in vivo anti-cancer drug screening system. Purpose. In this study, we aimed to establish an ALL animal model using NOD/SCID mouse and evaluate efficiency and sensitivity of the model as a preclinical drug screening system. Materials and Methods. Firefly luciferase (fLuc)-gene introduced ALL (ALL/fLuc) cell line and patient-originated ALL cells were transplanted into a tibia of NOD/SCID mouse. We conducted a comparative analysis of intra-bone marrow (IBMT) transplanted leukemia model with IP and IV transplantation of leukemic cells. Results. IBMT of ALL/fLuc cells effectively established a bioluminescent leukemia NOD/SCID mouse model. Upon comparison of IBMT model with IP and IV transplantation models, infusing identical number of ALL/fLuc cells into NOD/SCID mice resulted in IBMT model with evaluable bioluminescent signal, but not in IP and IV models. In IBMT model, bioluminescent signals of ALL/fLuc cells emitted from peripheral blood, tibia and infiltrated organs indicated that leukemia model was established. The changes in these signals' strength reflected dose-dependent cytotoxic effects of vincristine, which allowed leukemia model with evaluable bioluminescent signal to be utilized as a preclinical drug screening system. IBMT leukemia model was also established using primary ALL cells that can provide additional insights for the development of leukemia therapeutics. Conclusion. IBMT of ALL/fLuc cells enables development of leukemia mouse model with the greater bioluminescent sensitivity than IP and IV in NOD/SCID to evaluate candidate for development of anti-cancer drug. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document