scholarly journals Carbon Monoxide Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication by the Cyclic GMP/Protein Kinase G and NF-κB Signaling Pathway

2016 ◽  
Vol 91 (1) ◽  
Author(s):  
Angke Zhang ◽  
Lijuan Zhao ◽  
Na Li ◽  
Hong Duan ◽  
Hongliang Liu ◽  
...  

ABSTRACT Porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses to the pork industry worldwide each year. Our previous research demonstrated that heme oxygenase-1 (HO-1) can suppress PRRSV replication via an unknown molecular mechanism. In this study, inhibition of PRRSV replication was demonstrated to be mediated by carbon monoxide (CO), a downstream metabolite of HO-1. Using several approaches, we demonstrate that CO significantly inhibited PRRSV replication in both a PRRSV permissive cell line, MARC-145, and the predominant cell type targeted during in vivo PRRSV infection, porcine alveolar macrophages (PAMs). Our results showed that CO inhibited intercellular spread of PRRSV; however, it did not affect PRRSV entry into host cells. Furthermore, CO was found to suppress PRRSV replication via the activation of the cyclic GMP/protein kinase G (cGMP/PKG) signaling pathway. CO significantly inhibits PRRSV-induced NF-κB activation, a required step for PRRSV replication. Moreover, CO significantly reduced PRRSV-induced proinflammatory cytokine mRNA levels. In conclusion, the present study demonstrates that CO exerts its anti-PRRSV effect by activating the cellular cGMP/PKG signaling pathway and by negatively regulating cellular NF-κB signaling. These findings not only provide new insights into the molecular mechanism of HO-1 inhibition of PRRSV replication but also suggest potential new control measures for future PRRSV outbreaks. IMPORTANCE PRRSV causes great economic losses each year to the swine industry worldwide. Carbon monoxide (CO), a metabolite of HO-1, has been shown to have antimicrobial and antiviral activities in infected cells. Our previous research demonstrated that HO-1 can suppress PRRSV replication. Here we show that endogenous CO produced through HO-1 catalysis mediates the antiviral effect of HO-1. CO inhibits PRRSV replication by activating the cellular cGMP/PKG signaling pathway and by negatively regulating cellular NF-κB signaling. These findings not only provide new insights into the molecular mechanism of HO-1 inhibition of PRRSV replication but also suggest potential new control measures for future PRRSV outbreaks.

2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Andrew Holt ◽  
Danielle Martin ◽  
Patti Shaver ◽  
Shaquria Adderley ◽  
Joshua Stone ◽  
...  

Atherosclerotic lower extremity peripheral artery disease (PAD) is among the most prevalent, morbid and mortal of all cardiovascular disorders. Pathologic arterial smooth muscle (ASM) cell migration is a major component of atherogenic PAD and efforts aimed at attenuating its progression are clinically essential. Cyclic nucleotide signaling has long been studied for its growth-mitigating properties in the setting of PAD and other vascular growth disorders. In this study we hypothesized that the novel, heme-independent soluble guanylyl cyclase activator BAY 60-2770 (BAY) inhibits ASM cell migration through phosphorylation of the protein kinase G (PKG) target and actin-binding protein vasodilator-stimulated phosphoprotein (VASP). In a rat model of injury-induced arterial growth, BAY significantly reduced neointima formation and luminal narrowing compared to vehicle (Veh)-treated control arteries after 2 weeks. Using rat and human ASM cells BAY significantly attenuated cell migration, reduced G:F actin, and increased cyclic GMP content, PKG activity and phosphorylated VASP at Ser239 (pVASP.S239) compared to Veh controls. Using site-directed mutagenesis, both full-length VASP-overexpressing (wild type, WT) and VASP.S239 phosphorylation-resistant mutants showed significantly reduced cell migration compared to naïve controls, however, there was no effect on cell migration between either VASP transfected group in the presence of BAY. Interestingly, both VASP mutants showed significantly increased PKG activity compared to naïve cells, and in turn pharmacologic PKG blockade in the presence of BAY fully reversed the inhibitory effect of BAY alone on cell migration. These data suggest BAY has capacity to inhibit ASM cell migration through cyclic GMP/PKG/VASP signaling yet through mechanisms independent of pVASP.S239. Findings from this study implicate BAY via cyclic GMP/PKG/VASP as a potential pharmacotherapeutic agent against aberrant ASM growth disorders such as PAD.


mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Yixu Wang ◽  
Yi Zhen Deng ◽  
Guobing Cui ◽  
Chengwei Huang ◽  
Bin Zhang ◽  
...  

ABSTRACT Sporisorium scitamineum is the fungal pathogen causing severe sugarcane smut disease that leads to massive economic losses globally. S. scitamineum invades host cane by dikaryotic hyphae, formed after sexual mating of two haploid sporidia of opposite mating type. Therefore, mating/filamentation is critical for S. scitamineum pathogenicity, while its molecular mechanisms remain largely unknown. The AGC (cyclic AMP [cAMP]-dependent protein kinase 1 [protein kinase A {PKA}], cGMP-dependent protein kinase [PKG], and protein kinase C [PKC]) kinase family is a group of serine/threonine (Ser/Thr) protein kinases conserved among eukaryotic genomes, serving a variety of physiological functions, including cell growth, metabolism, differentiation, and cell death. In this study, we identified an AGC kinase, named SsAgc1 (for S. scitamineum Agc1), and characterized its function by reverse genetics. Our results showed that SsAgc1 is critical for S. scitamineum mating/filamentation and pathogenicity, and oxidative stress tolerance under some circumstances. Transcriptional profiling revealed that the SsAgc1 signaling pathway may control expression of the genes governing fungal mating/filamentation and tryptophan metabolism, especially for tryptophol production. We showed that tryptophan and tryptophol could at least partially restore ssagc1Δ mating/filamentation. Overall, our work revealed a signaling pathway mediated by AGC protein kinases to regulate fungal mating/filamentation, possibly through sensing and responding to tryptophol as signal molecules. IMPORTANCE The AGC signaling pathway represents a conserved distinct signaling pathway in regulation of fungal differentiation and virulence, while it has not been identified or characterized in the sugarcane smut fungus Sporisorium scitamineum. In this study, we identified a PAS domain-containing AGC kinase, SsAgc1, in S. scitamineum. Functional analysis revealed that SsAgc1 plays a regulatory role on the fungal dimorphic switch.


2011 ◽  
Vol 11 (S1) ◽  
Author(s):  
Robert M Blanton ◽  
Eiki Takimoto ◽  
Angela Lane ◽  
Mark J Aronovitz ◽  
Richard H Karas ◽  
...  

2000 ◽  
Vol 275 (28) ◽  
pp. 21722-21729 ◽  
Author(s):  
Vincent Sauzeau ◽  
Hélène Le Jeune ◽  
Chrystelle Cario-Toumaniantz ◽  
Albert Smolenski ◽  
Suzanne M. Lohmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document