scholarly journals Human Cytomegalovirus (HCMV)-Specific CD4+ T Cells Are Polyfunctional and Can Respond to HCMV-Infected Dendritic Cells In Vitro

2017 ◽  
Vol 91 (6) ◽  
Author(s):  
Sarah E. Jackson ◽  
George X. Sedikides ◽  
Gavin M. Mason ◽  
Georgina Okecha ◽  
Mark R. Wills

ABSTRACT Human cytomegalovirus (HCMV) infection and periodic reactivation are generally well controlled by the HCMV-specific T cell response in healthy people. While the CD8+ T cell response to HCMV has been extensively studied, the HCMV-specific CD4+ T cell effector response is not as well understood, especially in the context of direct interactions with HCMV-infected cells. We screened the gamma interferon (IFN-γ) and interleukin-10 (IL-10) responses to 6 HCMV peptide pools (pp65, pp71, IE1, IE2, gB, and US3, selected because they were the peptides most frequently responded to in our previous studies) in 84 donors aged 23 to 74 years. The HCMV-specific CD4+ T cell response to pp65, IE1, IE2, and gB was predominantly Th1 biased, with neither the loss nor the accumulation of these responses occurring with increasing age. A larger proportion of donors produced an IL-10 response to pp71 and US3, but the IFN-γ response was still dominant. CD4+ T cells specific to the HCMV proteins studied were predominantly effector memory cells and produced both cytotoxic (CD107a expression) and cytokine (macrophage inflammatory protein 1β secretion) effector responses. Importantly, when we measured the CD4+ T cell response to cytomegalovirus (CMV)-infected dendritic cells in vitro, we observed that the CD4+ T cells produced a range of cytotoxic and secretory effector functions, despite the presence of CMV-encoded immune evasion molecules. CD4+ T cell responses to HCMV-infected dendritic cells were sufficient to control the dissemination of virus in an in vitro assay. Together, the results show that HCMV-specific CD4+ T cell responses, even those from elderly individuals, are highly functional and are directly antiviral. IMPORTANCE Human cytomegalovirus (HCMV) infection is carried for a lifetime and in healthy people is kept under control by the immune system. HCMV has evolved many mechanisms to evade the immune response, possibly explaining why the virus is never eliminated during the host's lifetime. The dysfunction of immune cells associated with the long-term carriage of HCMV has been linked with poor responses to new pathogens and vaccines when people are older. In this study, we investigated the response of a subset of immune cells (CD4+ T cells) to HCMV proteins in healthy donors of all ages, and we demonstrate that the functionality of CD4+ T cells is maintained. We also show that CD4+ T cells produce effector functions in response to HCMV-infected cells and can prevent virus spread. Our work demonstrates that these HCMV-specific immune cells retain many important functions and help to prevent deleterious HCMV disease in healthy older people.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1354-1354
Author(s):  
Annkristin Heine ◽  
Tobias Holderried ◽  
Frank Grünebach ◽  
Silke Appel ◽  
Markus M. Weck ◽  
...  

Abstract Transfection of dendritic cells (DC) with in vitro transcribed RNA was shown to be a highly efficient method to generate antigen specific T cells, probably due to the induction of a polyclonal T cell response directed against multiple antigens presented on different HLA allels. However, the experimental evidence of this assumption remains to be demonstrated. To accomplish this, we used monocyte derived DC that were electroporated with RNA coding for the CMV pp65 antigen. The induction and expansion of antigen specific CD8+ and CD4+ T cells was assessed using a pannel of peptides derived from this antigen and presented on HLA-A2, -A1, -A11, -A24, -B35 and -B7 in IFN-g ELISPOT, 51Cr-release and proliferation assays. Autologous DC generated from CMV positive healthy donors were pulsed with peptides or transfected with pp65 RNA and utilized as stimulators. Autologous purified CD8+ and CD4+ lymphocytes were used as effector cells. By applying this approach we found that transfection of DC with pp65 RNA induces an expansion of polyclonal CD8+ mediated T cell responses that recognized peptide antigens presented on different HLA molecules. These in vitro generated cytotoxic T cells were able to efficiently lyse DC pulsed with pp65 derived peptides or transfected with the cognate RNA in an antigen specific manner after several in vitro restimulations. Furthermore, this experimental approach allowed the identification of the immunodominace of T cell epitopes presented upon RNA transfection. The HLA-2 directed responses were more pronounced as compared to the HLA-A1, -A11, -A24 or -B35 allels. In contrast, in 7 out of 7 HLA-A2 and HLA-B7 positive donors B7-peptides elicited a stronger T cell response than the A2-peptide, indicating the immunodominance of HLA-B7 epitopes. Interestingly, transfection of DC with pp65 RNA resulted in the induction of CD4+ antigen specific T cells that produced IFN-g and proliferated upon stimulation with transfected DC. In the next set of experiments we analyzed the possible induction of CMV specific T cells that recognize epitopes deduced from different antigens. Co-transfection of DC with a mixture of RNAs coding for the CMV pp65 and IE1 antigens elicited polyclonal T lymphocytes specific for peptides derived from both antigens. More importantly, polyclonal cytotoxic T cells could be elicited in peripheral blood of 2 out of 3 CMV negative donors demonstrating the efficiency of this approach. Our results demonstrate that DC transfected with RNA can elicit polyclonal T cell responses and have implications for the development of immunotherapeutic strategies to target viral or tumor associated antigens.


2010 ◽  
Vol 91 (8) ◽  
pp. 2040-2048 ◽  
Author(s):  
Siok-Keen Tey ◽  
Felicia Goodrum ◽  
Rajiv Khanna

Recent studies have shown that long-term persistence of human cytomegalovirus (HCMV) in mononuclear cells of myeloid lineage is dependent on the UL138 open reading frame, which promotes latent infection. Although T-cell recognition of protein antigens from all stages of lytic HCMV infection is well established, it is not clear whether proteins expressed during latent HCMV infection can also be recognized. This study conducted an analysis of T-cell response towards proteins associated with HCMV latency. Ex vivo analysis of T cells from healthy virus carriers revealed a dominant CD8+ T-cell response to the latency-associated pUL138 protein, which recognized a non-canonical 13 aa epitope in association with HLA-B*3501. These pUL138-specific T cells displayed a range of memory phenotypes that were in general less differentiated than that previously described in T cells specific for HCMV lytic antigens. Antigen-presentation assays revealed that endogenous pUL138 could be presented efficiently by HCMV-infected cells. However, T-cell recognition of pUL138 was dependent on newly synthesized protein, with little presentation from stable, long-lived protein. These data demonstrate that T cells targeting latency-associated protein products exist, although HCMV may limit the presentation of latent proteins, thereby restricting T-cell recognition of latently infected cells.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2547-2547
Author(s):  
Helga Schmetzer ◽  
Christoph Schmid ◽  
Susanne Kufner ◽  
Renate Pelka-Fleischer ◽  
Tanja Kroell ◽  
...  

Abstract The presentation of leukemic antigens can be improved in AML and MDS by in vitro generation of dendritic cells of leukemic origin (DCleu), thereby creating a platform for the generation of leukemia-specific cytotoxic lymphocytes (CTL). To further investigate this approach, we developed a serum-free culture system using MCM-Mimic medium (X-vivo + GM-GSF + IL-4 + FL + IL1β + IL-6 + TNFα + PGE2) for differentiation of malignant myeloid blasts to DCleu. Periperal blood mononuclear cells (PB-MNC) were obtained from 100 AML and 55 MDS-patients. Samples contained a mean of 59%/and 6% of blasts, respectively. After 14 days, cultures contained on average 34% (AML) and 20%(MDS) DC. DC yields were best in monocytic subtypes (AML M4, M5 and CMML). Cytogenetic aberrations of the leukemia had no influence. The leukemic origin of cultured DC was demonstrated using a acombined FISH/immune phenotyping assay (FISH/IPA): In cells showing a characteristic DC morphology and immune phenotype, FISH was used to detect specific cytogenetic aberrations identified in the leukemic population at time of diagnosis. Alternativly, DCleu were identified by detecting coexpression of DC markers and a leukemia-specific immune phenotype (as defined by aberrant expression of lineage markers or a characteristic CD34+/CD117+ phenotype in MDS). However, in most cases not all leukemic blasts in a given sample could be differentiated, since on average 47% of clonal cells did not acquire a DC-like immunophenotype. Vice versa, not all DC identified at the end of the culture period were DCleu. The capacity of DCleu to elicit a specific T-cell response was demonstrated by upregulation of contact-molecules, responsible for DC/T-cell contact, by DC-activated T-cell proliferation and by the capacity of DC-activated T-cells to specifically lyse naive blasts. In 6%/31% of AML/MDS-cases, <10% DC could be generated. Therefore, other DC-culture-assays were compared with respect to DC harvest, to identify the best method for DC-generation in each individual patient. Compared to `MCM-Mimic`, harvest of DC could be improved by `CA-Ionophore-media`(A23187 + Il4) in 4 of 7 cases, whereas in 3 cases, MCM led to higher DC-yields. In conclusion, DCleu can be generated in the majority of patients with AML and MDS. To optimize DC harvest for in vitro and in vivo use, different culture assays should be compared in each individual case. DCleu are able to elicit a specific T-cell response in vitro. Nevertheless, cultures containing DCleu also contain relevant numbers of undifferentiated blasts and DC of non-leukemic origin. These cells may represent an obstacle for the clinical use of DCleu, since they may cause specific anergy or unspecific stimulation of effector T-cells. Improvement of culture conditions for generation of DCleu, and methods to separate DCleu before stimulation of effector cells will be required, before clinical trials are feasible.


2001 ◽  
Vol 193 (2) ◽  
pp. 207-218 ◽  
Author(s):  
Shigeyuki Mori ◽  
Hideki Nakano ◽  
Kentaro Aritomi ◽  
Chrong-Reen Wang ◽  
Michael D. Gunn ◽  
...  

The paucity of lymph node T cells (plt) mutation leads to a loss of CCL21 and CCL19 expression in secondary lymphoid organs. plt mice have defects in the migration of naive T cells and activated dendritic cells into the T cell zones of lymphoid organs, suggesting that they would have defects in T cell immune responses. We now demonstrate T cell responses in plt mice are delayed but ultimately enhanced. Responses to contact sensitization are decreased at day 2 after priming but increased at day 6. After subcutaneous immunization, antigen-specific T cell proliferation and cytokine production in plt mice are increased and remain markedly elevated for at least 8 wk. Compared with wild-type mice, a proportion of T cell response in plt mice are shifted to the spleen, and prior splenectomy reduces the T cell response in draining lymph nodes. After immunization of plt mice, T cells and dendritic cells colocalize in the superficial cortex of lymph nodes and in splenic bridging channels, but not in T cell zones. These results demonstrate that plt mice mount robust T cell responses despite the failure of naive T cells and activated dendritic cells to enter the thymus dependent areas of secondary lymphoid organs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Eleonora Gallerani ◽  
Davide Proietto ◽  
Beatrice Dallan ◽  
Marco Campagnaro ◽  
Salvatore Pacifico ◽  
...  

Advanced age is associated with severe symptoms and death upon SARS-CoV-2 infection. Virus-specific CD8+ T-cell responses have shown to be protective toward critical COVID-19 manifestations, suggesting that suboptimal cellular immunity may contribute to the age-pattern of the disease. The induction of a CD8+ T-cell response against an emerging pathogen like SARS-CoV-2 relies on the activation of naive T cells. To investigate whether the primary CD8+ T-cell response against this virus is defective in advanced age, we used an in vitro approach to prime SARS-CoV-2-specific naive CD8+ T cells from healthy, unexposed donors of different age groups. Compared to younger adults, older individuals display a poor SARS-CoV-2-specific T-cell priming capacity in terms of both magnitude and quality of the response. In addition, older subjects recognize a lower number of epitopes. Our results implicate that immune aging is associated with altered primary SARS-CoV-2-specific CD8+ T-cell responses.


2011 ◽  
Vol 79 (11) ◽  
pp. 4493-4502 ◽  
Author(s):  
Shih-Hung Hsieh ◽  
Jr-Shiuan Lin ◽  
Juin-Hua Huang ◽  
Shang-Yang Wu ◽  
Ching-Liang Chu ◽  
...  

ABSTRACTWe have previously revealed the protective role of CD8+T cells in host defense againstHistoplasma capsulatumin animals with CD4+T cell deficiency and demonstrated that sensitized CD8+T cells are restimulatedin vitroby dendritic cells that have ingested apoptotic macrophage-associatedHistoplasmaantigen. Here we show that immunization with apoptotic phagocytes containing heat-killedHistoplasmaefficiently activated functional CD8+T cells whose contribution was equal to that of CD4+T cells in protection againstHistoplasmachallenge. Inhibition of macrophage apoptosis due to inducible nitric oxide synthase (iNOS) deficiency or by caspase inhibitor treatment dampened the CD8+T cell but not the CD4+T cell response to pulmonaryHistoplasmainfection. In mice subcutaneously immunized with viableHistoplasmayeasts whose CD8+T cells are protective againstHistoplasmachallenge, there was heavy granulocyte and macrophage infiltration and the infiltrating cells became apoptotic. In mice subcutaneously immunized with carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled apoptotic macrophages containing heat-killedHistoplasma, the CFSE-labeled macrophage material was found to localize within dendritic cells in the draining lymph node. Moreover, depleting dendritic cells in immunized CD11c-DTR mice significantly reduced CD8+T cell activation. Taken together, our results revealed that phagocyte apoptosis in theHistoplasma-infected host is associated with CD8+T cell activation and that immunization with apoptotic phagocytes containing heat-killedHistoplasmaefficiently evokes a protective CD8+T cell response. These results suggest that employing apoptotic phagocytes as antigen donor cells is a viable approach for the development of efficacious vaccines to elicit strong CD8+T cell as well as CD4+T cell responses toHistoplasmainfection.


2005 ◽  
Vol 79 (15) ◽  
pp. 9419-9429 ◽  
Author(s):  
Nicole E. Miller ◽  
Jennifer R. Bonczyk ◽  
Yumi Nakayama ◽  
M. Suresh

ABSTRACT Although it is well documented that CD8 T cells play a critical role in controlling chronic viral infections, the mechanisms underlying the regulation of CD8 T-cell responses are not well understood. Using the mouse model of an acute and chronic lymphocytic choriomeningitis virus (LCMV) infection, we have examined the relative importance of peripheral T cells and thymic emigrants in the elicitation and maintenance of CD8 T-cell responses. Virus-specific CD8 T-cell responses were compared between mice that were either sham thymectomized or thymectomized (Thx) at ∼6 weeks of age. In an acute LCMV infection, thymic deficiency did not affect either the primary expansion of CD8 T cells or the proliferative renewal and maintenance of virus-specific lymphoid and nonlymphoid memory CD8 T cells. Following a chronic LCMV infection, in Thx mice, although the initial expansion of CD8 T cells was normal, the contraction phase of the CD8 T-cell response was exaggerated, which led to a transient but striking CD8 T-cell deficit on day 30 postinfection. However, the virus-specific CD8 T-cell response in Thx mice rebounded quickly and was maintained at normal levels thereafter, which indicated that the peripheral T-cell repertoire is quite robust and capable of sustaining an effective CD8 T-cell response in the absence of thymic output during a chronic LCMV infection. Taken together, these findings should further our understanding of the regulation of CD8 T-cell homeostasis in acute and chronic viral infections and might have implications in the development of immunotherapy.


Blood ◽  
2010 ◽  
Vol 116 (15) ◽  
pp. 2694-2705 ◽  
Author(s):  
Sherrie J. Divito ◽  
Zhiliang Wang ◽  
William J. Shufesky ◽  
Quan Liu ◽  
Olga A. Tkacheva ◽  
...  

Abstract The prevailing idea regarding the mechanism(s) by which therapeutic immunosuppressive dendritic cells (DCs) restrain alloimmunity is based on the concept that they interact directly with antidonor T cells, inducing anergy, deletion, and/or regulation. However, this idea has not been tested in vivo. Using prototypic in vitro–generated maturation-resistant (MR) DCs, we demonstrate that once MR-DCs carrying donor antigen (Ag) are administered intravenously, they decrease the direct and indirect pathway T-cell responses and prolong heart allograft survival but fail to directly regulate T cells in vivo. Rather, injected MR-DCs are short-lived and reprocessed by recipient DCs for presentation to indirect pathway CD4+ T cells, resulting in abortive activation and deletion without detrimental effect on the number of indirect CD4+ FoxP3+ T cells, thus increasing the regulatory to effector T cell relative percentage. The effect on the antidonor response was independent of the method used to generate therapeutic DCs or their viability; and in accordance with the idea that recipient Ag-presenting cells mediate the effects of therapeutic DCs in transplantation, prolongation of allograft survival was achieved using donor apoptotic MR-DCs or those lacking surface major histocompatibility complex molecules. We therefore conclude that therapeutic DCs function as Ag-transporting cells rather than Ag-presenting cells to prolong allograft survival.


2008 ◽  
Vol 82 (16) ◽  
pp. 8161-8171 ◽  
Author(s):  
Kara S. Cox ◽  
James H. Clair ◽  
Michael T. Prokop ◽  
Kara J. Sykes ◽  
Sheri A. Dubey ◽  
...  

ABSTRACT Results from Merck's phase II adenovirus type 5 (Ad5) gag/pol/nef test-of-concept trial showed that the vaccine lacked efficacy against human immunodeficiency virus (HIV) infection in a high-risk population. Among the many questions to be explored following this outcome are whether (i) the Ad5 vaccine induced the quality of T-cell responses necessary for efficacy and (ii) the lack of efficacy in the Ad5 vaccine can be generalized to other vector approaches intended to induce HIV type 1 (HIV-1)-specific T-cell responses. Here we present a comprehensive evaluation of the T-cell response profiles from cohorts of clinical trial subjects who received the HIV CAM-1 gag insert delivered by either a regimen with DNA priming followed by Ad5 boosting (n = 50) or a homologous Ad5/Ad5 prime-boost regimen (n = 70). The samples were tested using a statistically qualified nine-color intracellular cytokine staining assay measuring interleukin-2 (IL-2), tumor necrosis factor alpha, macrophage inflammatory protein 1β, and gamma interferon production and expression of CD107a. Both vaccine regimens induced CD4+ and CD8+ HIV gag-specific T-cell responses which variably expressed several intracellular markers. Several trends were observed in which the frequencies of HIV-1-specific CD4+ T cells and IL-2 production from antigen-specific CD8+ T cells in the DNA/Ad5 cohort were more pronounced than in the Ad5/Ad5 cohort. Implications of these results for future vaccine development will be discussed.


Vaccines ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 50 ◽  
Author(s):  
Georgina Bowyer ◽  
Tommy Rampling ◽  
Jonathan Powlson ◽  
Richard Morter ◽  
Daniel Wright ◽  
...  

Immunogenicity of T cell-inducing vaccines, such as viral vectors or DNA vaccines and Bacillus Calmette-Guérin (BCG), are frequently assessed by cytokine-based approaches. While these are sensitive methods that have shown correlates of protection in various vaccine studies, they only identify a small proportion of the vaccine-specific T cell response. Responses to vaccination are likely to be heterogeneous, particularly when comparing prime and boost or assessing vaccine performance across diverse populations. Activation-induced markers (AIM) can provide a broader view of the total antigen-specific T cell response to enable a more comprehensive evaluation of vaccine immunogenicity. We tested an AIM assay for the detection of vaccine-specific CD4+ and CD8+ T cell responses in healthy UK adults vaccinated with viral vectored Ebola vaccine candidates, ChAd3-EBO-Z and MVA-EBO-Z. We used the markers, CD25, CD134 (OX40), CD274 (PDL1), and CD107a, to sensitively identify vaccine-responsive T cells. We compared the use of OX40+CD25+ and OX40+PDL1+ in CD4+ T cells and OX40+CD25+ and CD25+CD107a+ in CD8+ T cells for their sensitivity, specificity, and associations with other measures of vaccine immunogenicity. We show that activation-induced markers can be used as an additional method of demonstrating vaccine immunogenicity, providing a broader picture of the global T cell response to vaccination.


Sign in / Sign up

Export Citation Format

Share Document