scholarly journals Identification of a Hydrophobic Domain of HA2 Essential to Morphogenesis of Helicoverpa armigera Nucleopolyhedrovirus

2008 ◽  
Vol 82 (8) ◽  
pp. 4072-4081 ◽  
Author(s):  
Qian Wang ◽  
Yun Wang ◽  
Changyong Liang ◽  
Jianhua Song ◽  
Xinwen Chen

ABSTRACT The HA2 protein of the Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus (HearNPV) is a WASP homology protein capable of nucleating branched actin filaments in the presence of the Arp2/3 complex in vitro. To determine the role of ha2 in the HearNPV life cycle, ha2 knockout and ha2 repair bacmids were constructed. Transfection and infection analysis demonstrated that the ha2 null bacmid was unable to produce infectious budded virus (BV), while the repair bacmid rescued the defect. In vitro analysis demonstrated that the WCA domain of HA2 accelerates Arp2/3-mediated actin assembly and is indispensable to the function of HA2. However, analysis of the repaired recombinant with a series of truncated ha2 mutants demonstrated that the WCA domain was essential but not enough to yield infectious virions, and a hydrophobic domain (H domain) consisting of amino acids (aa) 167 to 193 played a pivotal role in the production of BV. Subcellular localization analysis with enhanced green fluorescent protein fusions showed that the H domain functioned as a nuclear localization signal. In addition, deletion of the C terminus of the ha2 product, a phosphatidylinositol 4-kinase homolog, dramatically decreased the viral titer, while deletion of 128 aa from the N terminus did not affect HA2 function.

1998 ◽  
Vol 336 (2) ◽  
pp. 367-371 ◽  
Author(s):  
Leen AMERY ◽  
Chantal BREES ◽  
Myriam BAES ◽  
Chiaki SETOYAMA ◽  
Retsu MIURA ◽  
...  

The functionality of the C-terminus (Ser-Asn-Leu; SNL) of human d-aspartate oxidase, an enzyme proposed to have a role in the inactivation of synaptically released d-aspartate, as a peroxisome-targeting signal (PTS1) was investigated in vivoand in vitro. Bacterially expressed human d-aspartate oxidase was shown to interact with the human PTS1-binding protein, peroxin protein 5 (PEX5p). Binding was gradually abolished by carboxypeptidase treatment of the oxidase and competitively inhibited by a Ser-Lys-Leu (SKL)-containing peptide. After transfection of mouse fibroblasts with a plasmid encoding green fluorescent protein (GFP) extended by PKSNL (the C-terminal pentapeptide of the oxidase), a punctate fluorescent pattern was evident. The modified GFP co-localized with peroxisomal thiolase as shown by indirect immunofluorescence. On transfection in fibroblasts lacking PEX5p receptor, GFP–PKSNL staining was cytosolic. Peroxisomal import of GFP extended by PGSNL (replacement of the positively charged fourth-last amino acid by glycine) seemed to be slower than that of GFP–PKSNL, whereas extension by PKSNG abolished the import of the modified GFP. Taken together, these results indicate that SNL, a tripeptide not fitting the PTS1 consensus currently defined in mammalian systems, acts as a functional PTS1 in mammalian systems, and that the consensus sequence, based on this work and that of other groups, has to be broadened to (S/A/C/K/N)-(K/R/H/Q/N/S)-L.


2001 ◽  
Vol 82 (5) ◽  
pp. 1013-1025 ◽  
Author(s):  
Michelle L. L. Donnelly ◽  
Garry Luke ◽  
Amit Mehrotra ◽  
Xuejun Li ◽  
Lorraine E. Hughes ◽  
...  

The 2A region of the aphthovirus foot-and-mouth disease virus (FMDV) polyprotein is only 18 aa long. A ‘primary’ intramolecular polyprotein processing event mediated by 2A occurs at its own C terminus. FMDV 2A activity was studied in artificial polyproteins in which sequences encoding reporter proteins flanked the 2A sequence such that a single, long, open reading frame was created. The self-processing properties of these artificial polyproteins were investigated and the co-translational ‘cleavage’ products quantified. The processing products from our artificial polyprotein systems showed a molar excess of ‘cleavage’ product N-terminal of 2A over the product C-terminal of 2A. A series of experiments was performed to characterize our in vitro translation systems. These experiments eliminated the translational or transcriptional properties of the in vitro systems as an explanation for this imbalance. In addition, the processing products derived from a control construct encoding the P1P2 region of the human rhinovirus polyprotein, known to be proteolytically processed, were quantified and found to be equimolar. Translation of a construct encoding green fluorescent protein (GFP), FMDV 2A and β-glucuronidase, also in a single open reading frame, in the presence of puromycin, showed this antibiotic to be preferentially incorporated into the [GFP2A] translation product. We conclude that the discrete translation products from our artificial polyproteins are not produced by proteolysis. We propose that the FMDV 2A sequence, rather than representing a proteolytic element, modifies the activity of the ribosome to promote hydrolysis of the peptidyl(2A)-tRNAGly ester linkage, thereby releasing the polypeptide from the translational complex, in a manner that allows the synthesis of a discrete downstream translation product to proceed. This process produces a ribosomal ‘skip’ from one codon to the next without the formation of a peptide bond.


2007 ◽  
Vol 81 (8) ◽  
pp. 4323-4330 ◽  
Author(s):  
Nandini Sen ◽  
Adrish Sen ◽  
Erich R. Mackow

ABSTRACT Pathogenic hantaviruses cause two human diseases: hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS). The hantavirus G1 protein contains a long, 142-amino-acid cytoplasmic tail, which in NY-1 virus (NY-1V) is ubiquitinated and proteasomally degraded (E. Geimonen, I. Fernandez, I. N. Gavrilovskaya, and E. R. Mackow, J. Virol. 77: 10760-10768, 2003). Here we report that the G1 cytoplasmic tails of pathogenic Andes (HPS) and Hantaan (HFRS) viruses are also degraded by the proteasome and that, in contrast, the G1 tail of nonpathogenic Prospect Hill virus (PHV) is stable and not proteasomally degraded. We determined that the signals which direct NY-1V G1 tail degradation are present in a hydrophobic region within the C-terminal 30 residues of the protein. In contrast to that of PHV, the NY-1V hydrophobic domain directs the proteasomal degradation of green fluorescent protein and constitutes an autonomous degradation signal, or “degron,” within the NY-1V G1 tail. Replacing 4 noncontiguous residues of the NY-1V G1 tail with residues present in the stable PHV G1 tail resulted in a NY-1V G1 tail that was not degraded by the proteasome. In contrast, changing a different but overlapping set of 4 PHV residues to corresponding NY-1V residues directed proteasomal degradation of the PHV G1 tail. The G1 tails of pathogenic, but not nonpathogenic, hantaviruses contain intervening hydrophilic residues within the C-terminal hydrophobic domain, and amino acid substitutions that alter the stability or degradation of NY-1V or PHV G1 tails result from removing or adding intervening hydrophilic residues. Our results identify residues that selectively direct the proteasomal degradation of pathogenic hantavirus G1 tails. Although a role for the proteasomal degradation of the G1 tail in HPS or HFRS is unclear, these findings link G1 tail degradation to viral pathogenesis and suggest that degrons within hantavirus G1 tails are potential virulence determinants.


2011 ◽  
Vol 92 (6) ◽  
pp. 1324-1331 ◽  
Author(s):  
Sijiani Luo ◽  
Yanfang Zhang ◽  
Xushi Xu ◽  
Marcel Westenberg ◽  
Just M. Vlak ◽  
...  

ORF100 (ha100) of Helicoverpa armigera nucleopolyhedrovirus (HearNPV) has been reported as one of the unique genes of group II alphabaculoviruses encoding a protein located in the occlusion-derived virus (ODV) envelope and nucleocapsid. The protein consists of 510 aa with a predicted mass of 58.1 kDa and is a homologue of poly(ADP–ribose) glycohydrolase in eukaryotes. Western blot analysis detected a 60 kDa band in HearNPV-infected HzAM1 cells starting at 18 h post-infection. Transient expression of GFP-fused HA100 in HzAM1 cells resulted in cytoplasmic localization of the protein, but after superinfection with HearNPV, GFP-fused HA100 was localized in the nucleus. To study the function of HA100 further, an ha100-null virus was constructed using bacmid technology. Viral one-step growth curve analyses showed that the ha100-null virus had similar budded virus production kinetics to that of the parental virus. Electron microscopy revealed that deletion of HA100 did not alter the morphology of ODVs or occlusion bodies (OBs). However, bioassays in larvae showed that the 50 % lethal concentration (LC50) value of HA100-null OBs was significantly higher than that of parental OBs; the median lethal time (LT50) of ha100-null OBs was about 24 h later than control virus. These results indicate that HA100 is not essential for virus replication in vitro. However, it significantly affects the oral infectivity of OBs in host insects, suggesting that the association HA100 with the ODV contributes to the infectivity of OBs in vivo.


2001 ◽  
Vol 12 (8) ◽  
pp. 2482-2496 ◽  
Author(s):  
Nica Borgese ◽  
Ilaria Gazzoni ◽  
Massimo Barberi ◽  
Sara Colombo ◽  
Emanuela Pedrazzini

Many mitochondrial outer membrane (MOM) proteins have a transmembrane domain near the C terminus and an N-terminal cytosolic moiety. It is not clear how these tail-anchored (TA) proteins posttranslationally select their target, but C-terminal charged residues play an important role. To investigate how discrimination between MOM and endoplasmic reticulum (ER) occurs, we used mammalian cytochrome b 5, a TA protein existing in two, MOM or ER localized, versions. Substitution of the seven C-terminal residues of the ER isoform or of green fluorescent protein reporter constructs with one or two arginines resulted in MOM-targeted proteins, whereas a single C-terminal threonine caused promiscuous localization. To investigate whether targeting to MOM occurs from the cytosol or after transit through the ER, we tagged a MOM-directed construct with a C-terminal N-glycosylation sequence. Although in vitro this construct was efficiently glycosylated by microsomes, the protein expressed in vivo localized almost exclusively to MOM, and was nearly completely unglycosylated. The small fraction of glycosylated protein was in the ER and was not a precursor to the unglycosylated form. Thus, targeting occurs directly from the cytosol. Moreover, ER and MOM compete for the same polypeptide, explaining the dual localization of some TA proteins.


2021 ◽  
Vol 9 (5) ◽  
pp. 1005
Author(s):  
Olga Chervyakova ◽  
Elmira Tailakova ◽  
Nurlan Kozhabergenov ◽  
Sandugash Sadikaliyeva ◽  
Kulyaisan Sultankulova ◽  
...  

Capripoxviruses with a host range limited to ruminants have the great potential to be used as vaccine vectors. The aim of this work was to evaluate attenuated sheep pox virus (SPPV) vaccine strain NISKHI as a vector expressing several genes. Open reading frames SPPV020 (ribonucleotide kinase) and SPPV066 (thymidine kinase) were selected as sites for the insertion of foreign genes. Two integration plasmids with expression cassette were designed and constructed. Recombinant SPPVs expressing an enhanced green fluorescent protein (EGFP) (rSPPV(RRΔ)EGFP and rSPPV(TKΔ)EGFP), Foot-and-mouth disease virus capsid protein (VP1), and Brucella spp. outer membrane protein 25 (OMP25) (rSPPV(RRΔ)VP1A-(TKΔ)OMP25) were generated under the transient dominant selection method. The insertion of foreign genes into the SPPV020 and SPPV066 open reading frames did not influence the replication of the recombinant viruses in the cells. Successful foreign gene expression in vitro was assessed by luminescent microscopy (EGFP) and Western blot (VP1 and OMP25). Our results have shown that foreign genes were expressed by rSPPV both in permissive (lamb testicles) and non-permissive (bovine kidney, saiga kidney, porcine kidney) cells. Mice immunized with rSPPV(RRΔ)VP1A-(TKΔ)OMP25 elicited specific antibodies to both SPPV and foreign genes VP1 and OMP25. Thus, SPPV NISKHI may be used as a potential safe immunogenic viral vector for the development of polyvalent vaccines.


2021 ◽  
Vol 9 (2) ◽  
pp. 379
Author(s):  
Breanne M. Head ◽  
Christopher I. Graham ◽  
Teassa MacMartin ◽  
Yoav Keynan ◽  
Ann Karen C. Brassinga

Legionnaires’ disease incidence is on the rise, with the majority of cases attributed to the intracellular pathogen, Legionella pneumophila. Nominally a parasite of protozoa, L. pneumophila can also infect alveolar macrophages when bacteria-laden aerosols enter the lungs of immunocompromised individuals. L. pneumophila pathogenesis has been well characterized; however, little is known about the >25 different Legionella spp. that can cause disease in humans. Here, we report for the first time a study demonstrating the intracellular infection of an L. bozemanae clinical isolate using approaches previously established for L. pneumophila investigations. Specifically, we report on the modification and use of a green fluorescent protein (GFP)-expressing plasmid as a tool to monitor the L. bozemanae presence in the Acanthamoeba castellanii protozoan infection model. As comparative controls, L. pneumophila strains were also transformed with the GFP-expressing plasmid. In vitro and in vivo growth kinetics of the Legionella parental and GFP-expressing strains were conducted followed by confocal microscopy. Results suggest that the metabolic burden imposed by GFP expression did not impact cell viability, as growth kinetics were similar between the GFP-expressing Legionella spp. and their parental strains. This study demonstrates that the use of a GFP-expressing plasmid can serve as a viable approach for investigating Legionella non-pneumophila spp. in real time.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Peng-Fei Fu ◽  
Xuan Cheng ◽  
Bing-Qian Su ◽  
Li-Fang Duan ◽  
Cong-Rong Wang ◽  
...  

AbstractPseudorabies, caused by pseudorabies virus (PRV) variants, has broken out among commercial PRV vaccine-immunized swine herds and resulted in major economic losses to the pig industry in China since late 2011. However, the mechanism of virulence enhancement of variant PRV is currently unclear. Here, a recombinant PRV (rPRV HN1201-EGFP-Luc) with stable expression of enhanced green fluorescent protein (EGFP) and firefly luciferase as a double reporter virus was constructed on the basis of the PRV variant HN1201 through CRISPR/Cas9 gene-editing technology coupled with two sgRNAs. The biological characteristics of the recombinant virus and its lethality to mice were similar to those of the parental strain and displayed a stable viral titre and luciferase activity through 20 passages. Moreover, bioluminescence signals were detected in mice at 12 h after rPRV HN1201-EGFP-Luc infection. Using the double reporter PRV, we also found that 25-hydroxycholesterol had a significant inhibitory effect on PRV both in vivo and in vitro. These results suggested that the double reporter PRV based on PRV variant HN1201 should be an excellent tool for basic virology studies and evaluating antiviral agents.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andi R. Sultan ◽  
Kirby R. Lattwein ◽  
Nicole A. Lemmens-den Toom ◽  
Susan V. Snijders ◽  
Klazina Kooiman ◽  
...  

AbstractStaphylococcus aureus biofilms are a major problem in modern healthcare due to their resistance to immune system defenses and antibiotic treatments. Certain analgesic agents are able to modulate S. aureus biofilm formation, but currently no evidence exists if paracetamol, often combined with antibiotic treatment, also has this effect. Therefore, we aimed to investigate if paracetamol can modulate S. aureus biofilm formation. Considering that certain regulatory pathways for biofilm formation and virulence factor production by S. aureus are linked, we further investigated the effect of paracetamol on immune modulator production. The in vitro biofilm mass of 21 S. aureus strains from 9 genetic backgrounds was measured in the presence of paracetamol. Based on biofilm mass quantity, we further investigated paracetamol-induced biofilm alterations using a bacterial viability assay combined with N-Acetylglucosamine staining. Isothermal microcalorimetry was used to monitor the effect of paracetamol on bacterial metabolism within biofilms and green fluorescent protein (GFP) promoter fusion technology for transcription of staphylococcal complement inhibitor (SCIN). Clinically relevant concentrations of paracetamol enhanced biofilm formation particularly among strains belonging to clonal complex 8 (CC8), but had minimal effect on S. aureus planktonic growth. The increase of biofilm mass can be attributed to the marked increase of N-Acetylglucosamine containing components of the extracellular matrix, presumably polysaccharide intercellular adhesion. Biofilms of RN6390A (CC8) showed a significant increase in the immune modulator SCIN transcription during co-incubation with low concentrations of paracetamol. Our data indicate that paracetamol can enhance biofilm formation. The clinical relevance needs to be further investigated.


Sign in / Sign up

Export Citation Format

Share Document