scholarly journals Bamboo Mosaic Potexvirus Satellite RNA (satBaMV RNA)-Encoded P20 Protein Preferentially Binds to satBaMV RNA

1999 ◽  
Vol 73 (4) ◽  
pp. 3032-3039 ◽  
Author(s):  
Ming-Shiun Tsai ◽  
Yau-Heiu Hsu ◽  
Na-Sheng Lin

ABSTRACT A satellite RNA of 836 nucleotides [excluding the poly(A) tail] depends on the bamboo mosaic potexvirus (BaMV) for its replication and encapsidation. The BaMV satellite RNA (satBaMV) contains a single open reading frame encoding a 20-kDa nonstructural protein (P20). The P20 protein with eight histidine residues at the C terminus was overexpressed in Escherichia coli. Experiments of gel retardation, UV cross-linking, and Northwestern hybridization demonstrated that purified P20 was a nucleic-acid-binding protein. The binding of P20 to nucleic acids was strong and highly cooperative. P20 preferred binding to satBaMV- or BaMV-related sequences rather than to nonrelated sequences. By deletion analysis, the P20 binding sites were mainly located at the 5′ and 3′ untranslated regions of satBaMV RNA, and the RNA-protein interactions could compete with the poly(G) and, less efficiently, with the poly(U) homopolymers. The N-terminal arginine-rich motif of P20 was the RNA binding domain, as shown by in-frame deletion analysis. This is the first report that a plant virus satellite RNA-encoded nonstructural protein preferentially binds with nucleic acids.

2000 ◽  
Vol 74 (20) ◽  
pp. 9732-9737 ◽  
Author(s):  
Shin C. Chang ◽  
Ju-Chien Cheng ◽  
Yi-Hen Kou ◽  
Chuan-Hong Kao ◽  
Chiung-Hui Chiu ◽  
...  

ABSTRACT The nonstructural protein 3 (NS3) of hepatitis C virus (HCV) possesses protease, nucleoside triphosphatase, and helicase activities. Although the enzymatic activities have been extensively studied, the ATP- and RNA-binding domains of the NS3 helicase are not well-characterized. In this study, NS3 proteins with point mutations in the conserved helicase motifs were expressed inEscherichia coli, purified, and analyzed for their effects on ATP binding, RNA binding, ATP hydrolysis, and RNA unwinding. UV cross-linking experiments indicate that the lysine residue in the AX4GKS motif is directly involved in ATP binding, whereas the NS3(GR1490DT) mutant in which the arginine-rich motif (1486-QRRGRTGR-1493) was changed to QRRDTTGR bound ATP as well as the wild type. The binding activity of HCV NS3 helicase to the viral RNA was drastically reduced with the mutation at Arg1488 (R1488A) and was also affected by the K1236E substitution in the AX4GKS motif and the R1490A and GR1490DT mutations in the arginine-rich motif. Previously, Arg1490 was suggested, based on the crystal structure of an NS3-deoxyuridine octamer complex, to directly interact with the γ-phosphate group of ATP. Nevertheless, our functional analysis demonstrated the critical roles of Arg1490 in binding to the viral RNA, ATP hydrolysis, and RNA unwinding, but not in ATP binding.


1995 ◽  
Vol 311 (1) ◽  
pp. 219-224 ◽  
Author(s):  
T C Schulz ◽  
B Hopwood ◽  
P D Rathjen ◽  
J R Wells

The zinc finger is a protein domain that imparts specific nucleic acid-binding activity on a wide range of functionally important proteins. In this paper we report the molecular cloning and characterization of a novel murine zinc-finger gene, mZ13. Analysis of mZ13 cDNAs revealed that the gene expresses a 794-amino-acid protein encoded by a 2.7 kb transcript. The protein has an unusual arrangement of 13 zinc fingers into a ‘hand’ of 12 tandem fingers and a single isolated finger near the C-terminus. This structural organization is conserved with the probable chicken homologue, cZ13. mZ13 also contained an additional domain at the N-terminus which has previously been implicated in the regulation of zinc-finger transcription factor DNA-binding, via protein-protein interactions. mZ13 expression was detected in a wide range of murine embryonic and adult tissues. The structural organization of mZ13 and its expression profile suggest that it may function as a housekeeping DNA-binding protein that regulates the expression of specific genes.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3471-3471
Author(s):  
Jennifer Whangbo ◽  
Marshall Thomas ◽  
Geoffrey McCrossan ◽  
Aaron Deutsch ◽  
Kimberly Martinod ◽  
...  

Abstract When released from cytotoxic T lymphocytes and natural killer cells, Granzyme (Gzm) serine proteases induce programmed cell death of pathogen-infected cells and tumor cells. The Gzms rapidly accumulate in the target cell nucleus by an unknown mechanism. Many of the known substrates of GzmA and GzmB, the most abundant killer cell proteases, bind to DNA or RNA. Gzm substrates predicted by unbiased proteomics studies are also highly enriched for nucleic acid binding proteins. Here we show by fluorescence polarization assays that Gzms bind DNA and RNA with nanomolar affinity. We hypothesized that Gzm binding to nucleic acids enhances nuclear accumulation in target cells and facilitates their cleavage of nucleic acid-binding substrates. In fact, RNase treatment of cell lysates reduced cleavage of RNA binding protein (RBP) targets by GzmA and GzmB. Moreover, adding RNA to recombinant RBP substrates greatly enhanced in vitro cleavage by GzmB, but adding RNA to non-nucleic acid binding proteins did not. For example, exogenous RNA enhanced GzmB cleavage of recombinant hnRNP C1 (an RBP) but not LMNB1 (a non-RBP). In addition, GzmB cleaved the RNA-binding HuR protein efficiently only when it was bound to an HuR-binding RNA oligonucleotide, but not in the presence of an equal amount of non-binding RNA. Thus, nucleic acids facilitate Gzm cleavage of nucleic acid binding substrates. To evaluate whether nucleic acid binding influences Gzm trafficking in target cells, we incubated fixed target cells with RNase and then added Gzms. RNA degradation in target cells reduced Gzm cytosolic localization and increased nuclear accumulation. Similarly, pre-incubating Gzms with exogenous competitor DNA reduced Gzm nuclear localization. The Gzms form a monophyletic clade with other immune serine proteases including neutrophil elastase (NE) and cathepsin G (CATG). Upon neutrophil activation, NE translocates to the nucleus to drive the formation of neutrophil extracellular traps (NETs). NE and CATG, but not non-immune serine proteases such as trypsin and pancreatic elastase, also bind DNA with high affinity and localize to the nucleus of permeabilized cells. Consistent with this finding, competitor DNA also blocks the nuclear localization of NE. Moreover NE and CATG localization to NETs depends on DNA binding. Thus the antimicrobial activity of NETs may depend in part upon the affinity of these proteases for DNA. Our findings indicate that high affinity nucleic acid binding is a conserved and functionally important property of serine proteases involved in cell-mediated immunity. Disclosures: Lieberman: Alnylam Pharmaceuticals: Membership on an entity’s Board of Directors or advisory committees.


2009 ◽  
Vol 424 (3) ◽  
pp. 479-490 ◽  
Author(s):  
Sara R. Heras ◽  
M. Carmen Thomas ◽  
Francisco Macias ◽  
Manuel E. Patarroyo ◽  
Carlos Alonso ◽  
...  

It has been reported previously that the C2-L1Tc protein located in the Trypanosoma cruzi LINE (long interspersed nuclear element) L1Tc 3′ terminal end has NAC (nucleic acid chaperone) activity, an essential activity for retrotransposition of LINE-1. The C2-L1Tc protein contains two cysteine motifs of a C2H2 type, similar to those present in TFIIIA (transcription factor IIIA). The cysteine motifs are flanked by positively charged amino acid regions. The results of the present study show that the C2-L1Tc recombinant protein has at least a 16-fold higher affinity for single-stranded than for double-stranded nucleic acids, and that it exhibits a clear preference for RNA binding over DNA. The C2-L1Tc binding profile (to RNA and DNA) corresponds to a non-co-operative-binding model. The zinc fingers present in C2-L1Tc have a different binding affinity to nucleic acid molecules and also different NAC activity. The RRR and RRRKEK [NLS (nuclear localization sequence)] sequences, as well as the C2H2 zinc finger located immediately downstream of these basic stretches are the main motifs responsible for the strong affinity of C2-L1Tc to RNA. These domains also contribute to bind single- and double-stranded DNA and have a duplex-stabilizing effect. However, the peptide containing the zinc finger situated towards the C-terminal end of C2-L1Tc protein has a slight destabilization effect on a mismatched DNA duplex and shows a strong preference for single-stranded nucleic acids, such as C2-L1Tc. These results provide further insight into the essential properties of the C2-L1Tc protein as a NAC.


1987 ◽  
Vol 7 (8) ◽  
pp. 2947-2955
Author(s):  
A Y Jong ◽  
M W Clark ◽  
M Gilbert ◽  
A Oehm ◽  
J L Campbell

To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly homologous to a peptide in calf thymus UP1 and UP2 and a human heterogeneous nuclear ribonucleoprotein. Residues 125 to 162 constitute a fivefold tandem repeat of the sequence RGGFRG, the composition of which suggests a nucleic acid-binding site. Near the C terminus, residues 233 to 245 are homologous to several RNA-binding proteins. Of 18 C-terminal residues, 10 are acidic, a characteristic of the procaryotic single-stranded DNA-binding proteins and eucaryotic DNA- and RNA-binding proteins. In addition, examination of the subcellular distribution of SSB1 by immunofluorescence microscopy indicated that SSB1 is a nuclear protein, predominantly located in the nucleolus. Sequence homologies and the nucleolar localization make it likely that SSB1 functions in RNA metabolism in vivo, although an additional role in DNA metabolism cannot be excluded.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1109 ◽  
Author(s):  
Assia Mouhand ◽  
Marco Pasi ◽  
Marjorie Catala ◽  
Loussiné Zargarian ◽  
Anissa Belfetmi ◽  
...  

HIV-1 Gag polyprotein orchestrates the assembly of viral particles. Its C-terminus consists of the nucleocapsid (NC) domain that interacts with nucleic acids, and p1 and p6, two unstructured regions, p6 containing the motifs to bind ALIX, the cellular ESCRT factor TSG101 and the viral protein Vpr. The processing of Gag by the viral protease subsequently liberates NCp15 (NC-p1-p6), NCp9 (NC-p1) and NCp7, NCp7 displaying the optimal chaperone activity of nucleic acids. This review focuses on the nucleic acid binding properties of the NC domain in the different maturation states during the HIV-1 viral cycle.


2020 ◽  
Vol 36 (18) ◽  
pp. 4797-4804
Author(s):  
Shu Yang ◽  
Xiaoxi Liu ◽  
Raymond T Ng

Abstract Motivation The interaction between proteins and nucleic acids plays a crucial role in gene regulation and cell function. Determining the binding preferences of nucleic acid-binding proteins (NBPs), namely RNA-binding proteins (RBPs) and transcription factors (TFs), is the key to decipher the protein–nucleic acids interaction code. Today, available NBP binding data from in vivo or in vitro experiments are still limited, which leaves a large portion of NBPs uncovered. Unfortunately, existing computational methods that model the NBP binding preferences are mostly protein specific: they need the experimental data for a specific protein in interest, and thus only focus on experimentally characterized NBPs. The binding preferences of experimentally unexplored NBPs remain largely unknown. Results Here, we introduce ProbeRating, a nucleic acid recommender system that utilizes techniques from deep learning and word embeddings of natural language processing. ProbeRating is developed to predict binding profiles for unexplored or poorly studied NBPs by exploiting their homologs NBPs which currently have available binding data. Requiring only sequence information as input, ProbeRating adapts FastText from Facebook AI Research to extract biological features. It then builds a neural network-based recommender system. We evaluate the performance of ProbeRating on two different tasks: one for RBP and one for TF. As a result, ProbeRating outperforms previous methods on both tasks. The results show that ProbeRating can be a useful tool to study the binding mechanism for the many NBPs that lack direct experimental evidence. and implementation Availability and implementation The source code is freely available at <https://github.com/syang11/ProbeRating>. Supplementary information Supplementary data are available at Bioinformatics online.


2006 ◽  
Vol 80 (16) ◽  
pp. 7894-7901 ◽  
Author(s):  
Jeremiah S. Joseph ◽  
Kumar Singh Saikatendu ◽  
Vanitha Subramanian ◽  
Benjamin W. Neuman ◽  
Alexei Brooun ◽  
...  

ABSTRACT The severe acute respiratory syndrome coronavirus (SARS-CoV) possesses a large 29.7-kb positive-stranded RNA genome. The first open reading frame encodes replicase polyproteins 1a and 1ab, which are cleaved to generate 16 “nonstructural” proteins, nsp1 to nsp16, involved in viral replication and/or RNA processing. Among these, nsp10 plays a critical role in minus-strand RNA synthesis in a related coronavirus, murine hepatitis virus. Here, we report the crystal structure of SARS-CoV nsp10 at a resolution of 1.8 Å as determined by single-wavelength anomalous dispersion using phases derived from hexatantalum dodecabromide. nsp10 is a single domain protein consisting of a pair of antiparallel N-terminal helices stacked against an irregular β-sheet, a coil-rich C terminus, and two Zn fingers. nsp10 represents a novel fold and is the first structural representative of this family of Zn finger proteins found so far exclusively in coronaviruses. The first Zn finger coordinates a Zn2+ ion in a unique conformation. The second Zn finger, with four cysteines, is a distant member of the “gag-knuckle fold group” of Zn2+-binding domains and appears to maintain the structural integrity of the C-terminal tail. A distinct clustering of basic residues on the protein surface suggests a nucleic acid-binding function. Gel shift assays indicate that in isolation, nsp10 binds single- and double-stranded RNA and DNA with high-micromolar affinity and without obvious sequence specificity. It is possible that nsp10 functions within a larger RNA-binding protein complex. However, its exact role within the replicase complex is still not clear.


2011 ◽  
Vol 345 ◽  
pp. 423-428
Author(s):  
Ying Ning Sun ◽  
Yu Zhao ◽  
Wei Yu Wang

In silicon cloning, we obtained ILF2 gene by using human ILF2 gene sequence (NM_004515) to be probe. Sequence analysis showed that the in silicon cloned cDNA was 1662 base pairs long with an open reading frame (ORF) containing 1173 nucleotides encoding a protein of 390 amino acids. 5’-untranslated region (UTR) was 74 bp, and 3’-UTR was 413 bp. A comparison of the sheep ILF2 with cow, horse, human, mouse, xenopus and zebra fish ILF2 amino acids had 96%, 91%, 91%, 81%, 61%, and 54% identity. The PI was 5.19, and molecular weight of the deduced protein was 43 050.12 Da. The pig ILF2 contained a RGG-rich single-stranded RNA-binding domain and a DZF zinc-finger nucleic acid binding domain. This study laid a foundation for further analysis of structure, expression and regulation of ILF2 gene in sheep.


2005 ◽  
Vol 6 (1-2) ◽  
pp. 2-16 ◽  
Author(s):  
Russell Howson ◽  
Won-Ki Huh ◽  
Sina Ghaemmaghami ◽  
James V. Falvo ◽  
Kiowa Bower ◽  
...  

A major challenge in the post-genomic era is the development of experimental approaches to monitor the properties of proteins on a proteome-wide level. It would be particularly useful to systematically assay protein subcellular localization, post-translational modifications and protein–protein interactions, both at steady state and in response to environmental stimuli. Development of new reagents and methods will enhance our ability to do so efficiently and systematically. Here we describe the construction of two collections of budding yeast strains that facilitate proteome-wide measurements of protein properties. These collections consist of strains with an epitope tag integrated at the C-terminus of essentially every open reading frame (ORF), one with the tandem affinity purification (TAP) tag, and one with the green fluorescent protein (GFP) tag. We show that in both of these collections we have accurately tagged a high proportion of all ORFs (approximately 75% of the proteome) by confirming expression of the fusion proteins. Furthermore, we demonstrate the use of the TAP collection in performing high-throughput immunoprecipitation experiments. Building on these collections and the methods described in this paper, we hope that the yeast community will expand both the quantity and type of proteome level data available.


Sign in / Sign up

Export Citation Format

Share Document