scholarly journals CpG-Containing Oligonucleotides Are Efficient Adjuvants for Induction of Protective Antiviral Immune Responses with T-Cell Peptide Vaccines

1999 ◽  
Vol 73 (5) ◽  
pp. 4120-4126 ◽  
Author(s):  
Annette Oxenius ◽  
Marianne M. A. Martinic ◽  
Hans Hengartner ◽  
Paul Klenerman

ABSTRACT Synthetic nonmethylated oligonucleotides containing CpG dinucleotides (CpG-ODNs) have been shown to exhibit immunostimulatory activity. CpG-ODNs have the capacity to directly activate B cells, macrophages, and dendritic cells, and we show here that this is reflected by cell surface binding of oligonucleotides to these cell subsets. However, T cells are not directly activated by CpG-ODNs, which correlates with the failure to bind to the T-cell surface. Efficient competition for CpG-induced B-cell activation by non-CpG-containing oligonucleotides suggests that oligonucleotides might bind to an as yet undefined sequence-nonspecific receptor prior to cellular activation. Induction of protective T-cell responses against challenge infection with lymphocytic choriomeningitis virus (LCMV) or with recombinant vaccinia virus expressing the LCMV glycoprotein was achieved by immunizing mice with the immunodominant major histocompatibility complex class I-binding LCMV glycoprotein-derived peptide gp33 together with CpG-ODNs. In these experiments, B cells, potentially serving as CpG-ODN-activated antigen-presenting cells (APCs), were not required for induction of protective immunity since CpG-ODN–gp33-immunized B-cell-deficient mice were equally protected against challenge infection with both viruses. This finding suggested that macrophages and/or dendritic cells were sufficiently activated in vivo by CpG-ODNs to serve as potent APCs for the induction of naive T cells. Furthermore, treatment with CpG-ODN alone induced protection against infection with Listeria monocytogenes via antigen-independent activation of macrophages. These data suggest that CpG activation of macrophages and dendritic cells may provide a critical step in CpG-ODN adjuvant activity.

2003 ◽  
Vol 197 (2) ◽  
pp. 195-206 ◽  
Author(s):  
Simon Fillatreau ◽  
David Gray

We investigated the mechanism of CD4 T cell accumulation in B cell follicles after immunization. Follicular T cell numbers were correlated with the number of B cells, indicating B cell control of the niche that T cells occupy. Despite this, we found no role for B cells in the follicular migration of T cells. Instead, T cells are induced to migrate into B cell follicles entirely as a result of interaction with dendritic cells (DCs). Migration relies on CD40-dependent maturation of DCs, as it did not occur in CD40-deficient mice but was reconstituted with CD40+ DCs. Restoration was not achieved by the activation of DCs with bacterial activators (e.g., lipopolysaccharide, CpG), but was by the injection of OX40L–huIgG1 fusion protein. Crucially, the up-regulation of OX40L (on antigen-presenting cells) and CXCR-5 (on T cells) are CD40-dependent events and we show that T cells do not migrate to follicles in immunized OX40-deficient mice.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3078-3078
Author(s):  
Diane L Rossi ◽  
Edmund A Rossi ◽  
David M Goldenberg ◽  
Chien-Hsing Chang

Abstract Background Various formats of bispecific antibodies (bsAbs) to redirect effector T cells for the targeted killing of tumor cells have shown considerable promise both pre-clinically and clinically. The scFv-based constructs, including BiTE and DART, which bind monovalently to CD3 on T cells and to the target antigen on tumor cells, exhibit fast blood clearance and neurological toxicity due to their small size (∼55 kDa). Herein, we describe the generation of novel T-cell redirecting trivalent bsAbs comprising an anti-CD3 scFv covalently conjugated to a stabilized F(ab)2. The design was initially characterized with a prototype construct designated (19)-3s, which specifically targets CD19 on B cells. A panel of trivalent bsAbs was evaluated for their potential use in targeted T-cell immunotherapy of various B-cell malignancies. Potential advantages of this design include bivalent binding to tumor cells, a larger size (∼130 kDa) to preclude rapid renal clearance and penetration of the blood-brain barrier, and potent T-cell mediated cytotoxicity. Methods The DOCK-AND-LOCKTM (DNLTM) method was used to generate a panel of B-cell targeting bsAbs, (19)-3s, (20)-3s, (22)-3s, and (C2)-3s, which target CD19, CD20, CD22, and HLA-DR, respectively. This was achieved by combining a stabilized anti-X F(ab)2 with an anti-CD3-scFv, resulting in a homogeneous covalent structure of the designed composition, as shown by LC-MS, SE-HPLC, ELISA, SDS-PAGE, and immunoblot analyses. Each construct can mediate the formation of immunological synapses between T cells and malignant B cells, resulting in T-cell activation. At an E:T ratio of 10:1, using isolated T cells as effector cells, the bsAbs induced potent T-cell-mediated cytotoxicity in various B-cell malignancies, including Burkitt lymphomas (Daudi, Ramos, Namalwa), mantle cell lymphoma (Jeko-1), and acute lymphoblastic leukemia (Nalm-6). A non-tumor binding control, (14)-3s, induced only moderate T-cell killing at >10 nM. The nature of the antigen/epitope, particularly its size and proximity to the cell surface, appears to be more important than antigen density for T-cell retargeting potency (Table 1). It is likely that (20)-3s is consistently more potent than (19)-3s and (C2)-3s, even when the expression of CD19 or HLA-DR is considerably higher than CD20, as seen with Namalwa and Jeko-1, respectively. This is likely because the CD20 epitope comprises a small extracellular loop having close proximity to the cell surface. When compared directly using Daudi, (22)-3s was the least potent. Compared to CD19 and CD20, CD22 is expressed at the lowest density, is a rapidly internalizing antigen, and its epitope is further away from the cell surface; each of these factors may contribute to its reduced potency. Finally, sensitivity to T-cell retargeted killing is cell-line-dependent, as observed using (19)-3s, where Raji (IC50 >3 nM) is largely unresponsive yet Ramos (IC50 = 2 pM) is highly sensitive, even though the former expresses higher CD19 antigen density. Conclusions (19)-3s, (20)-3s, (22)-3s, and (C2)-3s can bind T cells and target B cells simultaneously and induce T-cell-mediated killing in vitro. The modular nature of the DNL method allowed the rapid production of several related conjugates for redirected T-cell killing of various B-cell malignancies, without the need for additional recombinant engineering and protein production. The close proximity of the CD20 extracellular epitope to the cell surface results in the highest potency for (20)-3s, which is an attractive candidate bsAb for use in this platform. We are currently evaluating the in vivo activity of these constructs to determine if this novel bsAb format offers additional advantages. Disclosures: Rossi: Immunomedics, Inc.: Employment. Rossi:Immunomedics, Inc.: Employment. Goldenberg:Immunomedics: Employment, stock options, stock options Patents & Royalties. Chang:Immunomedics, Inc: Employment, Stock option Other; IBC Pharmaceuticals, Inc.: Employment, Stock option, Stock option Other.


1988 ◽  
Vol 168 (1) ◽  
pp. 171-180 ◽  
Author(s):  
L A Casten ◽  
P Kaumaya ◽  
S K Pierce

The helper T cell recognition of soluble globular protein antigens requires that the proteins be processed by an APC, releasing a peptide that is transported to and held on the APC surface where it is recognized by the specific T cell in conjunction with Ia. When cellular processing functions are blocked, APC lose their ability to present native antigens while retaining the capacity to activate T cells when provided with a cognate peptide fragment that contains the T cell antigenic determinant. In this report, we show that a peptide fragment of the soluble globular protein antigen tobacco hornworm moth cytochrome c, residues 92-103 containing an additional NH2-terminal cysteine residue (THMcCys92-103), is effectively presented by B cells to an I-Ek-restricted, THMc-specific T cell hybrid when covalently coupled to antibodies specific for B cell surface Ig, Ia (Ak), or class I (Kk). Maximal activation of the T cells to the THMcCys92-103-antibody conjugates is achieved with 1/100-1/1,000th of the peptide required using unconjugated THMcCys92-103 or THMcCys92-103 coupled to nonspecific antibody. The T cell response to the peptide antibody conjugates is MHC restricted, but unlike native cytochrome c-antibody conjugates, THMcCys92-103-antibody conjugates do not require processing and can be presented by paraformaldehyde-fixed B cells. The THMcCys92-103-antibody conjugate are nearly as effective when incubated with B cells, and the unbound conjugates washed away before addition of T cells as when continuously present in culture with T cells and B cells, indicating that the active peptide antibody conjugate is associated at the B cell surface. The presentation of THMcCys92-103 coupled to monovalent Fab fragments of rabbit anti-Ig antibodies is less effective than that of the peptide coupled to bivalent antibody when either live or fixed B cells are APC, indicating that the avidity for the APC surface afforded by bivalent binding may be important in the conjugate's antigenicity. The results presented here indicate that a T cell-antigenic peptide, covalently coupled to a larger antibody molecule, can be readily recognized by an Ia-restricted helper T cell in the absence of processing. Moreover, the ability of the peptide to bind to B cell surfaces greatly augments the peptide's antigenicity, even when the binding is to structures distinct from the Ia molecule required for T cell activation.


1987 ◽  
Vol 166 (2) ◽  
pp. 506-519 ◽  
Author(s):  
M L Birkeland ◽  
L Simpson ◽  
P C Isakson ◽  
E Pure

Sepharose-anti-Ig and purified populations of small, high-density B cells have been used to study the formation and function of B lymphoblasts. Sepharose-anti-Ig converts small, Ia-poor B cells with a high-buoyant density to large, Ia-rich, B blasts with a low-buoyant density. We find that this response proceeds efficiently in the absence of IL-4 (BSF-1) as well as most T cells, macrophages, and dendritic cells. Further development of the blasts requires an additional stimulus, such as LPS or the conditioned medium of stimulated EL-4 thymoma cells. Within 6 h, blasts begin to enter S phase and within 24 h most divide. At later times (48-72 h) most of the blasts are actively secreting IgM. Recombinant IL-1, -2, -3, and -4 have little or no effect on the B blasts, and a neutralizing mAb to IL-4 does not block the response to EL-4 Sn. We conclude that Sepharose-anti-Ig induces B cell blastogenesis in a T-independent fashion and that these blasts represent a highly enriched population of cells that respond to distinct, T cell-derived lymphokines.


1997 ◽  
Vol 185 (11) ◽  
pp. 1909-1918 ◽  
Author(s):  
Jérôme Fayette ◽  
Bertrand Dubois ◽  
Stéphane Vandenabeele ◽  
Jean-Michel Bridon ◽  
Béatrice Vanbervliet ◽  
...  

Within T cell–rich areas of secondary lymphoid organs, interdigitating dendritic cells recruit antigen-specific T cells that then induce B cells to secrete Igs. This study investigates the possible role(s) of dendritic cells in the regulation of human B cell responses. In the absence of exogenous cytokines, in vitro generated dendritic cells (referred to as Dendritic Langerhans cells, D-Lc) induced surface IgA expression on ∼10% of CD40-activated naive sIgD+ B cells. In the presence of IL-10 and TGF-β, a combination of cytokines previously identified for its capacity to induce IgA switch, D-Lc strongly potentiated the induction of sIgA on CD40-activated naive B cells from 5% to 40–50%. D-Lc alone did not induce the secretion of IgA by CD40-activated naive B cells, which required further addition of IL-10. Furthermore, D-Lc skewed towards the IgA isotype at the expense of IgG, the Ig production of CD40-activated naive B cells cultured in the presence of IL-10 and TGF-β. Importantly, under these culture conditions, both IgA1 and IgA2 were detected. In the presence of IL-10, secretion of IgA2 by CD40-activated naive B cells could be detected only in response to D-Lc and was further enhanced by TGF-β. Collectively, these results suggest that in addition to activating T cells in the extrafollicular areas of secondary lymphoid organs, human D-Lc also directly modulate T cell–dependent B cell growth and differentiation, by inducing the IgA isotype switch.


1997 ◽  
Vol 185 (5) ◽  
pp. 941-952 ◽  
Author(s):  
Bertrand Dubois ◽  
Béatrice Vanbervliet ◽  
Jérome Fayette ◽  
Catherine Massacrier ◽  
Cees Van Kooten ◽  
...  

After antigen capture, dendritic cells (DC) migrate into T cell–rich areas of secondary lymphoid organs, where they induce T cell activation, that subsequently drives B cell activation. Here, we investigate whether DC, generated in vitro, can directly modulate B cell responses, using CD40L-transfected L cells as surrogate activated T cells. DC, through the production of soluble mediators, stimulated by 3- to 6-fold the proliferation and subsequent recovery of B cells. Furthermore, after CD40 ligation, DC enhanced by 30–300-fold the secretion of IgG and IgA by sIgD− B cells (essentially memory B cells). In the presence of DC, naive sIgD+ B cells produced, in response to interleukin-2, large amounts of IgM. Thus, in addition to activating naive T cells in the extrafollicular areas of secondary lymphoid organs, DC may directly modulate B cell growth and differentiation.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3717-3717
Author(s):  
Tahamtan Ahmadi ◽  
Nathalie Weizmann ◽  
Yvonne A. Efebera ◽  
David H. Sherr

Abstract Background: The potential for CD40 ligand (CD40L)-activated B cells to serve as antigen-presenting cells (APC) for cell-based immunotherapy has been suggested. Unlike dendritic cells (DC), CD40L-activated B cell populations are readily expandable in vitro. In addition, antigen-specific B cells may efficiently uptake, process, and present cognate protein antigens. Nevertheless, important questions regarding the relative efficacy of CD40L-activated B cells as cell-based vaccines remain. Here, we exploited the unique ability of B cells to uptake antigen through their B cell receptor (BCR) and the propensity for CD40L-activated B cells, including antigen-specific clones, to grow in culture and to process cognate protein antigens to determine if CD40L-activated B cells represent a suitable substitute for dendritic cells for cell-based immunotherapy. Methods: As a head to head comparison between CD40L-activated B cells and mature DC, CD40L-activated B cells and bone marrow-derived DC were pulsed with MHC II- or MHC I-restricted self protein-derived (MOG; MBP) peptides and tested for their ability to induce proliferation of CD4+ or CD8+ clones. To compare processing and presentation of foreign protein antigens, C57BL/6 mice were immunized with 200 mg NP-BSA or an equivalent volume of PBS emulsified in CFA, sacrificed 10 days later and splenocytes obtained to generate antigen-specific CD40L-activated B cells and T cells. Bone marrow cells from PBS/CFA immunized mice were used to generate DCs. CD40L-activated (antigen-specific) B cells and DC were pulsed with NP-BSA, NP-CGG, or BSA and assayed for their ability to induce proliferation of primary T cells. Results: B cell populations were readily expanded by culture on CD40L transfected L cells. CD40L stimulation significantly up-regulated MHC class I and II expression and induced expression of CD80 and CD86 to levels similar to those detected on mature DCs. CD40L-activated B cells were comparable to DCs when presenting MHC class I- or II-restricted self-peptides to T cell clones. When presenting cognate protein antigen (NP-BSA or BSA) to primary T cells, CD40L-activated B cells from NP-BSA immunized mice were as efficient as DC, both of which induced a 13–15 fold increase in T cell proliferation. To determine if the hapten moiety is sufficient to increase antigen up-take and presentation, DCs and CD40L-activated B cells from NP-BSA immunized mice were pulsed with NP-CGG and used as APC for T cells from NP-BSA immunized mice. DCs induced significant responses comparable to those seen with BSA and NP-BSA. Activated B cells from NP-BSA-immunized mice induced significantly higher responses to NP-CGG than activated B cells from control PBS/CFA “immunized” mice, although these responses were lower than those generated with dendritic cells. Conclusion:CD40L-activated B cells can be readily expanded in vitroand significantly up-regulate co-stimulatory molecules CD80 and CD86 to levels comparable to mature DCs,CD40L-activated B cells present MHC class I- and II-restricted self-peptides to T cell clones as efficiently as mature DCs,Antigen-primed B cells are as efficient at presenting cognate protein antigens as DCs, Immunization with a hapten-carrier is sufficient to induce hapten-specific B cells which, when activated with CD40L, effectively present unrelated neoantigens conjugated with the hapten. The data suggest that CD40L-activated B cells represent an important alternative APC for immunotherapy, particularly when previously educated to protein or haptenic determinants.


2005 ◽  
Vol 79 (11) ◽  
pp. 7255-7261 ◽  
Author(s):  
Maria Kotsiopriftis ◽  
Jerome E. Tanner ◽  
Caroline Alfieri

ABSTRACT The aim of this study was to elucidate the in vitro response of γδ T cells to Epstein-Barr virus (EBV)-infected B cells and to determine whether EBV-induced heat shock proteins (HSPs) might serve as γδ T-cell stimulants. Cytofluorometric analysis revealed HSP90 cell surface expression in 12% of the EBV-immortalized B-cell population in all four of the B-cell lines tested. HSP27, HSP60, and HSP70 were not detected on the cell surface by cytofluorometry in these same B-cell lines. HSP90 and HSP60, but not HSP70 or HSP27, were detected on the cell surface after 125I cell surface labeling and immunoprecipitation with anti-human HSP monoclonal antibodies. In vitro kinetic studies indicated that γδ T cells increased at least twofold by day 11 postinfection in cultures of EBV-seronegative peripheral blood lymphocytes infected with EBV, whereas percentages of αβ T cells in these same cultures either decreased slightly or remained relatively unchanged in response to EBV infection. Addition of anti-human HSP90 monoclonal antibody to the EBV-infected lymphocyte cultures inhibited γδ T-cell expansion by 92%. The inhibition of γδ T-cell expansion by anti-HSP90 antibody was reversed upon treatment with exogenous HSP90. Taken together, these results indicate that HSP90 played an important role in the stimulation of γδ T cells during EBV infection of B cells in vitro and may serve as an important immunomodulator of γδ T cells during acute EBV infection.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 238-238 ◽  
Author(s):  
Aniko Ginta Pordes ◽  
Christina Hausl ◽  
Peter Allacher ◽  
Rafi Uddin Ahmad ◽  
Eva M Muchitsch ◽  
...  

Abstract Memory B cells specific for factor VIII (FVIII) are critical for maintaining FVIII inhibitors in patients with hemophilia A. They are precursors of anti-FVIII antibody-producing plasma cells and are highly efficient antigen-presenting cells for the activation of T cells. The eradication of FVIII-specific memory B cells will be a prerequisite for any successful new approach to induce immune tolerance in patients with FVIII inhibitors. Little is known about the regulation of these cells. Previously we showed that ligands for toll-like receptors (TLR) 7 and 9 are able to re-stimulate FVIII-specific memory B cells in the absence of T-cell help. However, alternative “helper cells” such as dendritic cells are essential for providing help to memory B cells under such conditions. Based on these findings, we asked which co-stimulatory interactions are required for the restimulation of memory B cells in the presence of dendritic cells and ligands for TLR and whether these co-stimulatory interactions are the same as those required for the restimulation of memory B cells in the presence of activated T cells. We used spleen cells from hemophilic mice treated with human FVIII to generate highly purified populations of memory B cells, CD4+ T cells and dendritic cells. The required purity was achieved by a combination of magnetic bead separation and fluorescence-activated cell sorting. The memory B cell compartment was specified by the expression of CD19 together with IgG and the absence of surface IgM and IgD. Memory B cells were cultured in the presence of FVIII to stimulate their differentiation into anti-FVIII antibody-producing plasma cells. Different combinations of CD4+ T cells, ligands for TLR 7 and 9 and dendritic cells were added to the memory-B-cell cultures. Blocking antibodies and competitor proteins were used to specify the co-stimulatory interactions required for the re-stimulation of memory B cells in the presence of either CD4+ T cells or dendritic cells and ligands for TLR 7 and 9. Our results demonstrate that the blockade of B7-1 and B7-2 as well as the blockade of CD40L inhibit the re-stimulation of FVIII-specific memory B cells and their differentiation into anti-FVIII antibody-producing plasma cells in the presence of T-cell help. Similar requirements apply for the re-stimulation of memory B cells in the presence of dendritic cells and ligands for TLR 7 or 9. Dendritic cells in the absence of ligands for TLR are not able to provide help for the re-stimulation of memory B cells, which indicates that dendritic cells need to be activated. Furthermore, ligands for TLR 7 or 9 were not able to re-stimulate memory B cells in the complete absence of dendritic cells. Based on these results we conclude that dendritic cells activated by ligands for TLR 7 or 9 can substitute for activated CD4+ T cells in providing co-stimulatory help for memory-B-cell re-stimulation. CD40-CD40L interactions seem to be the most important co-stimulatory interactions for the re-stimulation of memory B cells, not only in the presence of activated CD4+ T cells but also in the presence of ligands for TLR and dendritic cells.


1994 ◽  
Vol 180 (5) ◽  
pp. 1829-1840 ◽  
Author(s):  
D J Cassell ◽  
R H Schwartz

Ligation of CD28 on CD4 Th1 clones and freshly isolated mixtures of naive and memory CD4 T cells triggered their T cell receptors (TCR) is sufficient to induce the costimulatory signals necessary for interleukin 2 (IL-2) production by these cells. CTLA-4-reactive ligands expressed on antigen-presenting cells (APC) are critical in providing costimulatory signals to these T cell populations. We demonstrate that these activation characteristics apply equally to purified naive CD4 T cells. Because B cell blasts express CTLA-4-reactive ligands and high levels of adhesion and major histocompatibility complex class II molecules, they would be expected to engage both the TCR and CD28 and consequently stimulate IL-2 production by naive CD4 T cells. Using purified populations of cells in limiting dilution cultures, we have carried out a quantitative analysis of the interaction between naive CD4 T cells and either activated B or dendritic cells. We demonstrate that B cell blasts stimulate a high frequency of naive CD4 T cells. Slight differences in TCR signaling efficiency between the two APC types were observed. Even at optimal peptide concentrations, however, the amount of IL-2 made by individual T cells was fourfold lower in response to B cell blasts than to dendritic cells. This relative deficiency of activated B cells was due to their inability to optimally costimulate naive CD4 T cells.


Sign in / Sign up

Export Citation Format

Share Document