scholarly journals Identification of a Cytoplasmic Targeting/Retention Signal in a Retroviral Gag Polyprotein

1999 ◽  
Vol 73 (7) ◽  
pp. 5431-5437 ◽  
Author(s):  
Gyu Choi ◽  
Sunyoung Park ◽  
Bongkun Choi ◽  
Suntaek Hong ◽  
Jiyeon Lee ◽  
...  

ABSTRACT Retroviral capsid assembly can occur by either of two distinct morphogenic processes: in type C viruses, the capsid assembles and buds at the plasma membrane, while in type B and D viruses, the capsid assembles within the cytoplasm and is then transported to the plasma membrane for budding. We have previously reported that a single-amino-acid substitution of a tryptophan for an arginine in the matrix protein (MA) of Mason-Pfizer monkey virus (MPMV) converts its capsid assembly from that of a type D retrovirus to that of the type C viruses (S. S. Rhee and E. Hunter, Cell 63:77–86, 1990). Here we identify a region of 18 amino acids within the MA of MPMV that is responsible for type D-specific morphogenesis. Insertion of these 18 amino acids into the MA of type C Moloney murine leukemia virus causes it to assemble an immature capsid in the cytoplasm. Furthermore, fusion of the MPMV MA to the green fluorescent protein resulted in altered intracellular targeting and a punctate accumulation of the fusion protein in the cytoplasm. These 18 amino acids, which are necessary and sufficient to target retroviral Gag polyproteins to defined sites in the cytoplasm, appear to define a novel mammalian cytoplasmic targeting/retention signal.

2021 ◽  
Author(s):  
David Soler ◽  
Thomas Kowatz ◽  
Andrew Sloan ◽  
Thomas McCormick ◽  
Kevin Cooper ◽  
...  

Abstract The inability to over-express AQP6 in the plasma membrane of heterologous cells has hampered efforts to further characterize the function of this aquaglyceroporin membrane protein at atomic detail. Using the AGR reporter system we have identified a region within loop C of AQP6 that is responsible for severely hampering its plasma membrane localization. Serine substitution corroborated that amino acids present within AQP6194-213 of AQP6 loop C contribute to intracellular retention. This intracellular retention signal may preclude proper plasma membrane trafficking and severely curtail expression of AQP6 in heterologous cells.


1999 ◽  
Vol 73 (4) ◽  
pp. 3430-3437 ◽  
Author(s):  
Alexandra Meindl ◽  
Nikolaus Osterrieder

ABSTRACT Experiments were conducted to analyze the equine herpesvirus 1 (EHV-1) gene 68 product which is encoded by the EHV-1 US2 homolog. An antiserum directed against the amino-terminal 206 amino acids of the EHV-1 US2 protein specifically detected a protein with an M r of 34,000 in cells infected with EHV-1 strain RacL11. EHV-1 strain Ab4 encodes a 44,000-M r Us2 protein, whereas vaccine strain RacH, a high-passage derivative of RacL11, encodes a 31,000-M r Us2 polypeptide. Irrespective of its size, the US2 protein was incorporated into virions. The EHV-1 US2 protein localized to membrane and nuclear fractions of RacL11-infected cells and to the envelope fraction of purified virions. To monitor intracellular trafficking of the protein, the green fluorescent protein (GFP) was fused to the carboxy terminus of the EHV-1 US2 protein or to a truncated US2 protein lacking a stretch of 16 hydrophobic amino acids at the extreme amino terminus. Both fusion proteins were detected at the plasma membrane and accumulated in the vicinity of nuclei of transfected cells. However, trafficking of either GFP fusion protein through the secretory pathway could not be demonstrated, and the EHV-1 US2 protein lacked detectable N- and O-linked carbohydrates. Consistent with the presence of the US2 protein in the viral envelope and plasma membrane of infected cells, a US2-negative RacL11 mutant (L11ΔUS2) exhibited delayed penetration kinetics and produced smaller plaques compared with either wild-type RacL11 or a US2-repaired virus. After infection of BALB/c mice with L11ΔUS2, reduced pathogenicity compared with the parental RacL11 virus and the repaired virus was observed. It is concluded that the EHV-1 US2 protein modulates virus entry and cell-to-cell spread and appears to support sustained EHV-1 replication in vivo.


2009 ◽  
Vol 83 (6) ◽  
pp. 2611-2622 ◽  
Author(s):  
Subash C. Das ◽  
Debasis Panda ◽  
Debasis Nayak ◽  
Asit K. Pattnaik

ABSTRACT A recombinant vesicular stomatitis virus (VSV-PeGFP-M-MmRFP) encoding enhanced green fluorescent protein fused in frame with P (PeGFP) in place of P and a fusion matrix protein (monomeric red fluorescent protein fused in frame at the carboxy terminus of M [MmRFP]) at the G-L gene junction, in addition to wild-type (wt) M protein in its normal location, was recovered, but the MmRFP was not incorporated into the virions. Subsequently, we generated recombinant viruses (VSV-PeGFP-ΔM-Mtc and VSV-ΔM-Mtc) encoding M protein with a carboxy-terminal tetracysteine tag (Mtc) in place of the M protein. These recombinant viruses incorporated Mtc at levels similar to M in wt VSV, demonstrating recovery of infectious rhabdoviruses encoding and incorporating a tagged M protein. Virions released from cells infected with VSV-PeGFP-ΔM-Mtc and labeled with the biarsenical red dye (ReAsH) were dually fluorescent, fluorescing green due to incorporation of PeGFP in the nucleocapsids and red due to incorporation of ReAsH-labeled Mtc in the viral envelope. Transport and subsequent association of M protein with the plasma membrane were shown to be independent of microtubules. Sequential labeling of VSV-ΔM-Mtc-infected cells with the biarsenical dyes ReAsH and FlAsH (green) revealed that newly synthesized M protein reaches the plasma membrane in less than 30 min and continues to accumulate there for up to 2 1/2 hours. Using dually fluorescent VSV, we determined that following adsorption at the plasma membrane, the time taken by one-half of the virus particles to enter cells and to uncoat their nucleocapsids in the cytoplasm is approximately 28 min.


2020 ◽  
Vol 95 (1) ◽  
Author(s):  
Nicole P. Kadzioch ◽  
Matthieu Gast ◽  
Francesco Origgi ◽  
Philippe Plattet

ABSTRACT The canine distemper virus (CDV) matrix (M) protein is multifunctional; it orchestrates viral assembly and budding, drives the formation of virus-like particles (VLPs), regulates viral RNA synthesis, and may support additional functions. CDV M may assemble into dimers, where each protomer is constituted by N-terminal and C-terminal domains (NTD and CTD, respectively). Here, to investigate whether electrostatic interactions between CDV M and the plasma membrane (PM) may contribute to budding activity, selected surface-exposed positively charged lysine residues, which are located within a large basic patch of CTD, were replaced by amino acids with selected properties. We found that some M mutants harboring amino acids with neutral and positive charge (methionine and arginine, respectively) maintained full functionality, including proper interaction and localization with the PM as well as intact VLP and progeny virus production as demonstrated by employing a cell exit-complementation system. Conversely, while the overall structural integrity remained mostly unaltered, most of the nonconservative M variants (carrying a glutamic acid; negatively charged) exhibited a cytosolic phenotype secondary to the lack of interaction with the PM. Consequently, such M variants were entirely defective in VLP production and viral particle formation. Furthermore, the proteasome inhibitor bortezomib significantly reduced wild-type M-mediated VLP production. Nevertheless, in the absence of the compound, all engineered M lysine variants exhibited unaffected ubiquitination profiles, consistent with other residues likely involved in this functionally essential posttranslational modification. Altogether, our data identified multiple surface-exposed lysine residues located within a basic patch of CDV M-CTD, critically contributing to PM association and ensuing membrane budding activity. IMPORTANCE Although vaccines against some morbilliviruses exist, infections still occur, which can result in dramatic brain disease or fatal outcome. Postexposure prophylaxis with antivirals would support global vaccination campaigns. Unfortunately, there is no efficient antiviral drug currently approved. The matrix (M) protein of morbilliviruses coordinates viral assembly and egress through interaction with multiple cellular and viral components. However, molecular mechanisms supporting these functions remain poorly understood, which preclude the rationale design of inhibitors. Here, to investigate potential interactions between canine distemper virus (CDV) M and the plasma membrane (PM), we combined structure-guided mutagenesis of selected surface-exposed lysine residues with biochemical, cellular, and virological assays. We identified several lysines clustering in a basic patch microdomain of the CDV M C-terminal domain, which contributed to PM association and budding activity. Our findings provide novel mechanistic information of how morbilliviruses assemble and egress from infected cells, thereby delivering bases for future antiviral drug development.


Viruses ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 482 ◽  
Author(s):  
Kaveesha J. Wijesinghe ◽  
Luke McVeigh ◽  
Monica L. Husby ◽  
Nisha Bhattarai ◽  
Jia Ma ◽  
...  

Marburg virus (MARV) is a lipid-enveloped negative sense single stranded RNA virus, which can cause a deadly hemorrhagic fever. MARV encodes seven proteins, including VP40 (mVP40), a matrix protein that interacts with the cytoplasmic leaflet of the host cell plasma membrane. VP40 traffics to the plasma membrane inner leaflet, where it assembles to facilitate the budding of viral particles. VP40 is a multifunctional protein that interacts with several host proteins and lipids to complete the viral replication cycle, but many of these host interactions remain unknown or are poorly characterized. In this study, we investigated the role of a hydrophobic loop region in the carboxy-terminal domain (CTD) of mVP40 that shares sequence similarity with the CTD of Ebola virus VP40 (eVP40). These conserved hydrophobic residues in eVP40 have been previously shown to be critical to plasma membrane localization and membrane insertion. An array of cellular experiments and confirmatory in vitro work strongly suggests proper orientation and hydrophobic residues (Phe281, Leu283, and Phe286) in the mVP40 CTD are critical to plasma membrane localization. In line with the different functions proposed for eVP40 and mVP40 CTD hydrophobic residues, molecular dynamics simulations demonstrate large flexibility of residues in the EBOV CTD whereas conserved mVP40 hydrophobic residues are more restricted in their flexibility. This study sheds further light on important amino acids and structural features in mVP40 required for its plasma membrane localization as well as differences in the functional role of CTD amino acids in eVP40 and mVP40.


2006 ◽  
Vol 17 (10) ◽  
pp. 4411-4419 ◽  
Author(s):  
April L. Risinger ◽  
Natalie E. Cain ◽  
Esther J. Chen ◽  
Chris A. Kaiser

The general amino acid permease, Gap1p, of Saccharomyces cerevisiae transports all naturally occurring amino acids into yeast cells for use as a nitrogen source. Previous studies have shown that a nonubiquitinateable form of the permease, Gap1pK9R,K16R, is constitutively localized to the plasma membrane. Here, we report that amino acid transport activity of Gap1pK9R,K16Rcan be rapidly and reversibly inactivated at the plasma membrane by the presence of amino acid mixtures. Surprisingly, we also find that addition of most single amino acids is lethal to Gap1pK9R,K16R-expressing cells, whereas mixtures of amino acids are less toxic. This toxicity appears to be the consequence of uptake of unusually large quantities of a single amino acid. Exploiting this toxicity, we isolated gap1 alleles deficient in transport of a subset of amino acids. Using these mutations, we show that Gap1p inactivation at the plasma membrane does not depend on the presence of either extracellular or intracellular amino acids, but does require active amino acid transport by Gap1p. Together, our findings uncover a new mechanism for inhibition of permease activity in response to elevated amino acid levels and provide a physiological explanation for the stringent regulation of Gap1p activity in response to amino acids.


1999 ◽  
Vol 73 (3) ◽  
pp. 1860-1867 ◽  
Author(s):  
Isabelle Le Blanc ◽  
Arielle R. Rosenberg ◽  
Marie-Christine Dokhélar

ABSTRACT We studied the involvement of the human T-cell leukemia virus type 1 (HTLV-1) Gag matrix protein in the cell-to-cell transmission of the virus using missense mutations of the basic amino acids. These basic amino acids are clustered at the N terminus of the protein in other retroviruses and are responsible for targeting the Gag proteins to the plasma membrane. In the HTLV–bovine leukemia virus genus of retroviruses, the basic amino acids are distributed throughout the matrix protein sequence. The HTLV-1 matrix protein contains 11 such residues. A wild-type phenotype was obtained only for mutant viruses with mutations at one of two positions in the matrix protein. The phenotypes of the other nine mutant viruses showed that the basic amino acids are involved at various steps of the replication cycle, including some after membrane targeting. Most of these nine mutations allowed normal synthesis, transport, and cleavage of the Gag precursor, but particle release was greatly affected for seven of them. In addition, four mutated proteins with correct particle release and envelope glycoprotein incorporation did not however permit cell-to-cell transmission of HTLV-1. Thus, particle release, although required, is not sufficient for the cell-to-cell transmission of HTLV-1, and the basic residues of the matrix protein are involved in steps that occur after viral particle release.


1988 ◽  
Vol 168 (6) ◽  
pp. 2045-2057 ◽  
Author(s):  
F Gotch ◽  
A McMichael ◽  
J Rothbard

CTL specific for the influenza A virus matrix peptide 57-68 and restricted by HLA-A2 were studied. Their ability to recognize a set of analogue peptides, each of which differed from the natural peptide by a single amino acid, was analyzed. This revealed a core of five amino acids, 61-65, where one or more changes completely abrogated recognition. The glycine at position 61 was the only residue where no substitution was tolerated. Analogue peptides that did not induce CTL-mediated lysis were tested as competitors with the natural peptide; those with substitutions at positions 60, 64, and 65 inhibited, identifying residues that interact with the TCR. Another approach was to test a set of four CTL clones on all of the analogues. Marked differences in recognition by individual CTL clones were observed for several substituted peptides. The data indicate that most of the analogues bind to HLA-A2 with possible differences in fine positioning of the peptide. An alpha helical orientation for the peptide is discussed.


2005 ◽  
Vol 16 (11) ◽  
pp. 5141-5151 ◽  
Author(s):  
Kanyan Xiao ◽  
Jennifer Garner ◽  
Kathleen M. Buckley ◽  
Peter A. Vincent ◽  
Christine M. Chiasson ◽  
...  

VE-cadherin is an adhesion molecule critical to vascular barrier function and angiogenesis. VE-cadherin expression levels are regulated by p120 catenin, which prevents lysosomal degradation of cadherins by unknown mechanisms. To test whether the VE-cadherin cytoplasmic domain mediates endocytosis, and to elucidate the nature of the endocytic machinery involved, the VE-cadherin tail was fused to the interleukin (IL)-2 receptor (IL-2R) extracellular domain. Internalization assays demonstrated that the VE-cadherin tail dramatically increased endocytosis of the IL-2R in a clathrin-dependent manner. Interestingly, p120 inhibited VE-cadherin endocytosis via a mechanism that required direct interactions between p120 and the VE-cadherin cytoplasmic tail. However, p120 did not inhibit transferrin internalization, demonstrating that p120 selectively regulates cadherin internalization rather than globally inhibiting clathrin-dependent endocytosis. Finally, cell surface labeling experiments in cells expressing green fluorescent protein-tagged p120 indicated that the VE-cadherin–p120 complex dissociates upon internalization. These results support a model in which the VE-cadherin tail mediates interactions with clathrin-dependent endocytic machinery, and this endocytic processing is inhibited by p120 binding to the cadherin tail. These findings suggest a novel mechanism by which a cytoplasmic binding partner for a transmembrane receptor can serve as a selective plasma membrane retention signal, thereby modulating the availability of the protein for endo-lysosomal processing.


Sign in / Sign up

Export Citation Format

Share Document