scholarly journals Integrating Reptilian Herpesviruses into the Family Herpesviridae

2005 ◽  
Vol 79 (2) ◽  
pp. 725-731 ◽  
Author(s):  
Duncan J. McGeoch ◽  
Derek Gatherer

ABSTRACT The phylogeny of reptilian herpesviruses (HVs) relative to mammalian and avian HVs was investigated by using available gene sequences and by alignment of encoded amino acid sequences and derivation of trees by maximum-likelihood and Bayesian methods. Phylogenetic loci were obtained for green turtle HV (GTHV) primarily on the basis of DNA polymerase (POL) and DNA binding protein sequences, and for lung-eye-trachea disease-associated HV (LETV) primarily from its glycoprotein B sequence; both have nodes on the branch leading to recognized species in the Alphaherpesvirinae subfamily and should be regarded as new members of that subfamily. A similar but less well defined locus was obtained for an iguanid HV based on a partial POL sequence. On the basis of short POL sequences (around 60 amino acid residues), it appeared likely that GTHV and LETV belong to a private clade and that three HVs of gerrhosaurs (plated lizards) are associated with the iguanid HV. Based on phylogenetic branching patterns for mammalian HV lineages that mirror those of host lineages, we estimated a date for the HV tree's root of around 400 million years ago. Estimated dates for branching events in the development of reptilian, avian, and mammalian Alphaherpesvirinae lineages could plausibly be accounted for in part but not completely by ancient coevolution of these virus lines with reptilian lineages and with the development of birds and mammals from reptilian progenitors.

2020 ◽  
Vol 17 (1) ◽  
pp. 59-77
Author(s):  
Anand Kumar Nelapati ◽  
JagadeeshBabu PonnanEttiyappan

Background:Hyperuricemia and gout are the conditions, which is a response of accumulation of uric acid in the blood and urine. Uric acid is the product of purine metabolic pathway in humans. Uricase is a therapeutic enzyme that can enzymatically reduces the concentration of uric acid in serum and urine into more a soluble allantoin. Uricases are widely available in several sources like bacteria, fungi, yeast, plants and animals.Objective:The present study is aimed at elucidating the structure and physiochemical properties of uricase by insilico analysis.Methods:A total number of sixty amino acid sequences of uricase belongs to different sources were obtained from NCBI and different analysis like Multiple Sequence Alignment (MSA), homology search, phylogenetic relation, motif search, domain architecture and physiochemical properties including pI, EC, Ai, Ii, and were performed.Results:Multiple sequence alignment of all the selected protein sequences has exhibited distinct difference between bacterial, fungal, plant and animal sources based on the position-specific existence of conserved amino acid residues. The maximum homology of all the selected protein sequences is between 51-388. In singular category, homology is between 16-337 for bacterial uricase, 14-339 for fungal uricase, 12-317 for plants uricase, and 37-361 for animals uricase. The phylogenetic tree constructed based on the amino acid sequences disclosed clusters indicating that uricase is from different source. The physiochemical features revealed that the uricase amino acid residues are in between 300- 338 with a molecular weight as 33-39kDa and theoretical pI ranging from 4.95-8.88. The amino acid composition results showed that valine amino acid has a high average frequency of 8.79 percentage compared to different amino acids in all analyzed species.Conclusion:In the area of bioinformatics field, this work might be informative and a stepping-stone to other researchers to get an idea about the physicochemical features, evolutionary history and structural motifs of uricase that can be widely used in biotechnological and pharmaceutical industries. Therefore, the proposed in silico analysis can be considered for protein engineering work, as well as for gout therapy.


1990 ◽  
Vol 266 (1) ◽  
pp. 221-225 ◽  
Author(s):  
T Suzuki ◽  
T Takagi ◽  
S Ohta

The deep-sea tube worm Lamellibrachia, belonging to the Phylum Vestimentifera, contains two giant extracellular haemoglobins, a 3000 kDa haemoglobin and a 440 kDa haemoglobin. The former consists of four haem-containing chains (AI-AIV) and two linker chains (AV and AVI) for the assembly of the haem-containing chains [Suzuki, Takagi & Ohta (1988) Biochem. J. 255, 541-545]. The tube-worm haemoglobins are believed to have a function of transporting sulphide (H2S) to internal bacterial symbionts, as well as of facilitating O2 transport [Arp & Childress (1983) Science 219, 295-297]. We have determined the complete amino acid sequence of Lamellibrachia chain AIII by automated or manual Edman sequencing. The chain is composed of 144 amino acid residues, has three cysteine residues at positions 3, 74 and 133, and has a molecular mass of 16,620 Da, including a haem group. The sequence showed significant homology (30-50% identity) with those of haem-containing chains of annelid giant haemoglobins. Two of the three cysteine residues are located at the positions where an intrachain disulphide bridge is formed in all annelid chains, but the remaining one (Cys-74) was located at a unique position, compared with annelid chains. Since the chain AIII was shown to have a reactive thiol group in the intact 3000 kDa molecule by preliminary experiments, the cysteine residue at position 74 appears to be one of the most probable candidates for the sulphide-binding sites. A phylogenetic tree was constructed from nine chains of annelid giant haemoglobins and one chain of vestimentiferan tube-worm haemoglobin now determined. The tree clearly showed that Lamellibrachia chain AIII belongs to the family of strain A of annelid giant haemoglobins, and that the two classes of Annelida, polychaete and oligochaete, and the vestimentiferan tube worm diverged at almost the same time. H.p.l.c. patterns of peptides (Figs. 4-7), amino acid compositions of peptides (Table 2) and amino acid sequences of intact protein and peptides (Table 3) have been deposited as Supplementary Publication SUP 50154 (13 pages) at the British Library Document Supply Centre, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1990) 265, 5.


1998 ◽  
Vol 79 (02) ◽  
pp. 306-309 ◽  
Author(s):  
Dougald Monroe ◽  
Julie Oliver ◽  
Darla Liles ◽  
Harold Roberts ◽  
Jen-Yea Chang

SummaryTissue factor pathway inhibitor (TFPI) acts to regulate the initiation of coagulation by first inhibiting factor Xa. The complex of factor Xa/ TFPI then inhibits the factor VIIa/tissue factor complex. The cDNA sequences of TFPI from several different species have been previously reported. A high level of similarity is present among TFPIs at the molecular level (DNA and protein sequences) as well as in biochemical function (inhibition of factor Xa, VIIa/tissue factor). In this report, we used a PCR-based screening method to clone cDNA for full length TFPI from a mouse macrophage cDNA library. Both cDNA and predicted protein sequences show significant homology to the other reported TFPI sequences, especially to that of rat. Mouse TFPI has a signal peptide of 28 amino acid residues followed by the mature protein (in which the signal peptide is removed) which has 278 amino acid residues. Mouse TFPI, like that of other species, consists of three tandem Kunitz type domains. Recombinant mouse TFPI was expressed in the human kidney cell line 293 and purified for functional assays. When using human clotting factors to investigate the inhibition spectrum of mouse TFPI, it was shown that, in addition to human factor Xa, mouse TFPI inhibits human factors VIIa, IXa, as well as factor XIa. Cloning and expression of the mouse TFPI gene will offer useful information and material for coagulation studies performed in a mouse model system.


1978 ◽  
Vol 176 (2) ◽  
pp. 359-364 ◽  
Author(s):  
Päivi Lehtovaara ◽  
Ulla Perttilä

The coupled oxidation of leghaemoglobins with O2 and ascorbate yielded oxyleghaemoglobin in the first reaction step, and the second step was the degradation of haem characterized by an A675 increase. Leghaemoglobins were degraded to biliverdin isomers specifically, depending on the structure of the protein. The main leghaemoglobin components of Glycine (soya bean) and Phaseolus (kidney bean) were degraded to biliverdin mixtures containing about 50% of the β-form, about 30% of the α-form and about 20% of the δ-isomer, whereas the leghaemoglobin I components of Vicia (broad bean) and Pisum (pea) were degraded almost exclusively to the β-isomer, with traces of the α-isomer. The amino acid sequences of Glycine and Phaseolus leghaemoglobins resemble each other, as do those of Vicia and Pisum. The site specificity of bile-pigment formation from leghaemoglobins can be tentatively explained by specific differences in the amino acid sequences at those regions of the polypeptide chain that are in the vicinity of the appropriate methine bridges. The ligand-binding site in different leghaemoglobins may be outlined on the basis of the present results, supposing that the haem is degraded when a reduction product of haem-bound O2 reacts with a methine bridge of the haem, and that the bridge specificity is regulated by hindering amino acid residues that determine the location of the bound O2. The residue phenylalanine-CD1 appears to be further away from the haem plane or in a markedly more flexible position in leghaemoglobins than in mammalian globins. The haem-bound oxygen atom B, in Fe–O(A)–O(B), seems to be free to rotate in all directions except that of the γ-bridge in Glycine and Phaseolus leghaemoglobins, but its position in Vicia and Pisum leghaemoglobin I might be restricted to the direction of the β-methine bridge.


1994 ◽  
Vol 299 (2) ◽  
pp. 545-552 ◽  
Author(s):  
Y Deyashiki ◽  
A Ogasawara ◽  
T Nakayama ◽  
M Nakanishi ◽  
Y Miyabe ◽  
...  

Human liver contains two dihydrodiol dehydrogenases, DD2 and DD4, associated with 3 alpha-hydroxysteroid dehydrogenase activity. We have raised polyclonal antibodies that cross-reacted with the two enzymes and isolated two 1.2 kb cDNA clones (C9 and C11) for the two enzymes from a human liver cDNA library using the antibodies. The clones of C9 and C11 contained coding sequences corresponding to 306 and 321 amino acid residues respectively, but lacked 5′-coding regions around the initiation codon. Sequence analyses of several peptides obtained by enzymic and chemical cleavages of the two purified enzymes verified that the C9 and C11 clones encoded DD2 and DD4 respectively, and further indicated that the sequence of DD2 had at least additional 16 residues upward from the N-terminal sequence deduced from the cDNA. There was 82% amino acid sequence identity between the two enzymes, indicating that the enzymes are genetic isoenzymes. A computer-based comparison of the cDNAs of the isoenzymes with the DNA sequence database revealed that the nucleotide and amino acid sequences of DD2 and DD4 are virtually identical with those of human bile-acid binder and human chlordecone reductase cDNAs respectively.


1973 ◽  
Vol 133 (4) ◽  
pp. 805-819 ◽  
Author(s):  
Francesco Bossa ◽  
Donatella Barra ◽  
Massimo Carloni ◽  
Paolo Fasella ◽  
Francesca Riva ◽  
...  

Peptides produced by thermolytic digestion of aminoethylated aspartate aminotransferase and of the oxidized enzyme were isolated and their amino acid sequences determined. Digestion by elastase of the carboxymethylated enzyme gave peptides representing approximately 40% of the primary structure. Fragments from these digests overlapped with previously reported sequences of peptides obtained by peptic and tryptic digestion (Doonan et al., 1972), giving ten composite peptides containing 395 amino acid residues. The amino acid composition of these composite peptides agrees well with that of the intact enzyme. Confirmatory results for some of the present data have been deposited as Supplementary Publication 50018 at the National Lending Library for Science and Technology, Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1973) 131, 5.


2004 ◽  
Vol 70 (6) ◽  
pp. 3700-3705 ◽  
Author(s):  
C. P. D. Brussaard ◽  
S. M. Short ◽  
C. M. Frederickson ◽  
C. A. Suttle

ABSTRACT Viruses infecting the harmful bloom-causing alga Phaeocystis globosa (Prymnesiophyceae) were readily isolated from Dutch coastal waters (southern North Sea) in 2000 and 2001. Our data show a large increase in the abundance of putative P. globosa viruses during blooms of P. globosa, suggesting that viruses are an important source of mortality for this alga. In order to examine genetic relatedness among viruses infecting P. globosa and other phytoplankton, DNA polymerase gene (pol) fragments were amplified and the inferred amino acid sequences were phylogenetically analyzed. The results demonstrated that viruses infecting P. globosa formed a closely related monophyletic group within the family Phycodnaviridae, with at least 96.9% similarity to each other. The sequences grouped most closely with others from viruses that infect the prymnesiophyte algae Chrysochromulina brevifilum and Chrysochromulina strobilus. Whether the P. globosa viruses belong to the genus Prymnesiovirus or form a separate group needs further study. Our data suggest that, like their phytoplankton hosts, the Chrysochromulina and Phaeocystis viruses share a common ancestor and that these prymnesioviruses and their algal host have coevolved.


2021 ◽  
Author(s):  
Liying Sun ◽  
Ziqian Lian ◽  
Subha Das ◽  
Jingxian Luo ◽  
Ida Bagus Andika

Abstract In this study, we describe the full-length genome sequence of a novel ourmia-like mycovirus, tentatively designated Botryosphaeria dothidea ourmia-like virus 1 (BdOLV1), isolated from the phytopathogenic fungus, Botryosphaeria dothidea strain P8, associated with apple ring rot in Shanxi province, China. The complete BdOLV1 genome is comprised of 2797 nucleotides, a positive-sense (+) single-stranded RNA (ssRNA) with a single open reading frame (ORF). The ORF putatively encodes a 642-amino acid polypeptide with conserved RNA-dependent RNA polymerase (RdRp) motifs, related to viruses of the family Botourmiaviridae. Phylogenetic analysis based on the RdRp amino acid sequences showed that BdOLV1 is grouped with oomycete-infecting unclassified viruses closely related to the genus Botoulivirus in Botourmiaviridae. This is the first report of a novel (+)ssRNA virus in B. dothidea related to the genus Botoulivirus in the family Botourmiaviridae.


1980 ◽  
Vol 187 (1) ◽  
pp. 65-74 ◽  
Author(s):  
D Penny ◽  
M D Hendy ◽  
L R Foulds

We have recently reported a method to identify the shortest possible phylogenetic tree for a set of protein sequences [Foulds Hendy & Penny (1979) J. Mol. Evol. 13. 127–150; Foulds, Penny & Hendy (1979) J. Mol. Evol. 13, 151–166]. The present paper discusses issues that arise during the construction of minimal phylogenetic trees from protein-sequence data. The conversion of the data from amino acid sequences into nucleotide sequences is shown to be advantageous. A new variation of a method for constructing a minimal tree is presented. Our previous methods have involved first constructing a tree and then either proving that it is minimal or transforming it into a minimal tree. The approach presented in the present paper progressively builds up a tree, taxon by taxon. We illustrate this approach by using it to construct a minimal tree for ten mammalian haemoglobin alpha-chain sequences. Finally we define a measure of the complexity of the data and illustrate a method to derive a directed phylogenetic tree from the minimal tree.


Sign in / Sign up

Export Citation Format

Share Document