scholarly journals Widespread Antisense Transcription in Escherichia coli

mBio ◽  
2010 ◽  
Vol 1 (1) ◽  
Author(s):  
James E. Dornenburg ◽  
Anne M. DeVita ◽  
Michael J. Palumbo ◽  
Joseph T. Wade

ABSTRACT The vast majority of annotated transcripts in bacteria are mRNAs. Here we identify ~1,000 antisense transcripts in the model bacterium Escherichia coli. We propose that these transcripts are generated by promiscuous transcription initiation within genes and that many of them regulate expression of the overlapping gene. IMPORTANCE The vast majority of known genes in bacteria are protein coding, and there are very few known antisense transcripts within these genes, i.e., RNAs that are encoded opposite the gene. Here we demonstrate the existence of ~1,000 antisense RNAs in the model bacterium Escherichia coli. Given the high potential for these RNAs to base pair with mRNA of the overlapping gene and the likelihood of clashes between transcription complexes of antisense and sense transcripts, we propose that antisense RNAs represent an important but overlooked class of regulatory molecule.

mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Linfeng Huang ◽  
Padraig Deighan ◽  
Jingmin Jin ◽  
Yingxue Li ◽  
Hung-Chi Cheung ◽  
...  

ABSTRACT Antisense transcription is widespread in bacteria. By base pairing with overlapping sense RNAs, antisense RNAs (asRNA) can form double-stranded RNAs (dsRNA), which are cleaved by RNase III, a dsRNA endoribonuclease. The ectopic expression of plant Tombusvirus p19 in Escherichia coli stabilizes ∼21-nucleotide (nt) dsRNA RNase III decay intermediates, which enabled us to characterize otherwise highly unstable asRNA by deep sequencing of p19-captured dsRNA. RNase III-produced small dsRNA were formed at most bacterial genes in the bacterial genome and in a plasmid. We classified the types of asRNA in genomic clusters producing the most abundant p19-captured dsRNA and confirmed RNase III regulation of asRNA and sense RNA decay at three type I toxin-antitoxin loci and at a coding gene, rsd. Furthermore, we provide potential evidence for the RNase III-dependent regulation of CspD protein by asRNA. The analysis of p19-captured dsRNA revealed an RNase III sequence preference for AU-rich sequences 3 nucleotides on either side of the cleavage sites and for GC-rich sequences in the 2-nt overhangs. Unexpectedly, GC-rich sequences were enriched in the middle section of p19-captured dsRNA, suggesting some unexpected sequence bias in p19 protein binding. Nonetheless, the ectopic expression of p19 is a sensitive method for identifying antisense transcripts and RNase III cleavage sites in dsRNA formed by overlapping sense and antisense transcripts in bacteria.


mBio ◽  
2012 ◽  
Vol 3 (4) ◽  
Author(s):  
Rahul Raghavan ◽  
Daniel B. Sloan ◽  
Howard Ochman

ABSTRACT Noncoding RNAs, including antisense RNAs (asRNAs) that originate from the complementary strand of protein-coding genes, are involved in the regulation of gene expression in all domains of life. Recent application of deep-sequencing technologies has revealed that the transcription of asRNAs occurs genome-wide in bacteria. Although the role of the vast majority of asRNAs remains unknown, it is often assumed that their presence implies important regulatory functions, similar to those of other noncoding RNAs. Alternatively, many antisense transcripts may be produced by chance transcription events from promoter-like sequences that result from the degenerate nature of bacterial transcription factor binding sites. To investigate the biological relevance of antisense transcripts, we compared genome-wide patterns of asRNA expression in closely related enteric bacteria, Escherichia coli and Salmonella enterica serovar Typhimurium, by performing strand-specific transcriptome sequencing. Although antisense transcripts are abundant in both species, less than 3% of asRNAs are expressed at high levels in both species, and only about 14% appear to be conserved among species. And unlike the promoters of protein-coding genes, asRNA promoters show no evidence of sequence conservation between, or even within, species. Our findings suggest that many or even most bacterial asRNAs are nonadaptive by-products of the cell’s transcription machinery. IMPORTANCE Application of high-throughput methods has revealed the expression throughout bacterial genomes of transcripts encoded on the strand complementary to protein-coding genes. Because transcription is costly, it is usually assumed that these transcripts, termed antisense RNAs (asRNAs), serve some function; however, the role of most asRNAs is unclear, raising questions about their relevance in cellular processes. Because natural selection conserves functional elements, comparisons between related species provide a method for assessing functionality genome-wide. Applying such an approach, we assayed all transcripts in two closely related bacteria, Escherichia coli and Salmonella enterica serovar Typhimurium, and demonstrate that, although the levels of genome-wide antisense transcription are similarly high in both bacteria, only a small fraction of asRNAs are shared across species. Moreover, the promoters associated with asRNAs show no evidence of sequence conservation between, or even within, species. These findings indicate that despite the genome-wide transcription of asRNAs, many of these transcripts are likely nonfunctional.


2020 ◽  
Vol 9 (21) ◽  
Author(s):  
Dominik Schneider ◽  
Daniela Zühlke ◽  
Tabea Petscheleit ◽  
Anja Poehlein ◽  
Katharina Riedel ◽  
...  

ABSTRACT The Gram-negative and rod-shaped Escherichia coli strain GW-AmxH19 was isolated from university hospital wastewater in Greifswald, Germany. The genome consists of two replicons, including one circular chromosome (5.04 Mb) and a circular plasmid (126.96 kb). The genome harbors 4,694 protein-coding genes, comprising multidrug resistance and a potential association with urogenital tract infections.


2011 ◽  
Vol 80 (2) ◽  
pp. 539-549 ◽  
Author(s):  
Kristi L. Frank ◽  
Aaron M. T. Barnes ◽  
Suzanne M. Grindle ◽  
Dawn A. Manias ◽  
Patrick M. Schlievert ◽  
...  

ABSTRACTEnterococcus faecalisis a member of the mammalian gastrointestinal microflora that has become a leading cause of nosocomial infections over the past several decades.E. faecalismust be able to adapt its physiology based on its surroundings in order to thrive in a mammalian host as both a commensal and a pathogen. We employed recombinase-basedin vivoexpression technology (RIVET) to identify promoters on theE. faecalisOG1RF chromosome that were specifically activated during the course of infection in a rabbit subdermal abscess model. The RIVET screen identified 249 putativein vivo-activated loci, over one-third of which are predicted to generate antisense transcripts. Three predicted antisense transcripts were detected inin vitro- andin vivo-grown cells, providing the first evidence ofin vivo-expressed antisense RNAs inE. faecalis. Deletions in thein vivo-activated genes that encode glutamate 5-kinase (proB[EF0038]), the transcriptional regulator EbrA (ebrA[EF1809]), and the membrane metalloprotease Eep (eep[EF2380]) did not hinder biofilm formation inin vitroassays. In a rabbit model of endocarditis, the ΔebrAstrain was fully virulent, the ΔproBstrain was slightly attenuated, and the Δeepstrain was severely attenuated. The Δeepvirulence defect could be complemented by the expression of the wild-type gene intrans. Microscopic analysis of early Δeepbiofilms revealed an abundance of small cellular aggregates that were not observed in wild-type biofilms. This work illustrates the use of a RIVET screen to provide information about the temporal activation of genes during infection, resulting in the identification and confirmation of a new virulence determinant in an important pathogen.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 781-781
Author(s):  
Alex Ebralidze ◽  
Pu Zhang ◽  
Frank Rosenbauer ◽  
Gang Huang ◽  
Ulrich Steidl ◽  
...  

Abstract The transcription factor PU.1 is an important regulator of hematopoiesis and correct expression levels in specific lineages are critical for normal hematopoietic development. Specifically, PU.1 is maintained or upregulated in specific lineages, and failure to downregulate PU.1 in other lineages can lead to a block in development of that lineage and/or leukemia. In vivo expression of PU.1 is dependent on an upstream regulatory element called the URE. Disruption of the URE leads to downregulation of PU.1 and development of leukemia and lymphoma, but the other distal elements regulating PU.1 have not been defined. Here we show that other phylogenetically conserved elements participate in the initiation of antisense transcription, and that these antisense RNAs function as important modulators of proper dosages of PU.1. Specifically, antisense transcripts originate from specific conserved sites in introns 1 and 3, and that the intron 3 site contains binding sites for transcription factors such as AML1 and Ets factors. The conserved intron 3 element also possesses anti-sense promoter activity. These antisense transcripts are present at about 15% of PU.1 sense transcripts in PU.1 expressing cells. They negatively regulate PU.1 sense RNA, as introduction of siRNA molecules which specifically target antisense transcripts lead to 3–5 fold increases in PU.1 sense RNA and protein. Both sense and antisense PU.1 gene RNAs are dependent on the URE and are transcribed from the same chromatin architecture, in which the conserved elements, including URE and sense and antisense promoters are located in the same nuclear fraction and can be shown to exist in the same nucleoprotein complex by chromosome conformation capture (3C). We are currently testing the mechanisms involved in the formation of such complexes, and specifically whether the complexes are mediated by binding of AML1 to the URE. Since we do not observe significant differences in antisense transcript levels between PU.1 high-expressing and PU.1 low-expressing cells, we hypothesize that the function of these antisense transcripts is to modulate rather than absolutely control PU.1 levels: in PU.1 high-expressing cells, such as myeloid cells, the antisense transcripts trim PU.1 levels to prevent overexpression, while in cell types in which PU.1 is not expressed, such as T cells, the antisense transcripts prevent any expression of PU.1. We propose that such a mechanism will likely be important in fine-tuning the regulation of many genes and may be the reason for the large number of overlapping complementary transcripts with so far unknown function.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Deani L. Cooper ◽  
Taku Harada ◽  
Samia Tamazi ◽  
Alexander E. Ferrazzoli ◽  
Susan T. Lovett

ABSTRACT In Escherichia coli, DNA replication is catalyzed by an assembly of proteins, the DNA polymerase III holoenzyme. This complex includes the polymerase and proofreading subunits, the processivity clamp, and clamp loader complex. The holC gene encodes an accessory protein (known as χ) to the core clamp loader complex and is the only protein of the holoenzyme that binds to single-strand DNA binding protein, SSB. HolC is not essential for viability, although mutants show growth impairment, genetic instability, and sensitivity to DNA damaging agents. In this study, we isolate spontaneous suppressor mutants in a ΔholC strain and identify these by whole-genome sequencing. Some suppressors are alleles of RNA polymerase, suggesting that transcription is problematic for holC mutant strains, or alleles of sspA, encoding stringent starvation protein. Using a conditional holC plasmid, we examine factors affecting transcription elongation and termination for synergistic or suppressive effects on holC mutant phenotypes. Alleles of RpoA (α), RpoB (β), and RpoC (β′) RNA polymerase holoenzyme can partially suppress loss of HolC. In contrast, mutations in transcription factors DksA and NusA enhanced the inviability of holC mutants. HolC mutants showed enhanced sensitivity to bicyclomycin, a specific inhibitor of Rho-dependent termination. Bicyclomycin also reverses suppression of holC by rpoA, rpoC, and sspA. An inversion of the highly expressed rrnA operon exacerbates the growth defects of holC mutants. We propose that transcription complexes block replication in holC mutants and that Rho-dependent transcriptional termination and DksA function are particularly important to sustain viability and chromosome integrity. IMPORTANCE Transcription elongation complexes present an impediment to DNA replication. We provide evidence that one component of the replication clamp loader complex, HolC, of Escherichia coli is required to overcome these blocks. This genetic study of transcription factor effects on holC growth defects implicates Rho-dependent transcriptional termination and DksA function as critical. It also implicates, for the first time, a role of SspA, stringent starvation protein, in avoidance or tolerance of replication/replication conflicts. We speculate that HolC helps avoid or resolve collisions between replication and transcription complexes, which become toxic in HolC’s absence.


2019 ◽  
Vol 8 (40) ◽  
Author(s):  
James E. Corban ◽  
Jacob Gramer ◽  
Russell Moreland ◽  
Mei Liu ◽  
Jolene Ramsey

Escherichia coli is a Gram-negative bacterium often found in animal intestinal tracts. Here, we present the genome of the Guernseyvirinae-like E. coli 4s siphophage Snoke. The 44.4-kb genome contains 81 protein-coding genes, for which 33 functions were predicted. The capsid morphogenesis gene in Snoke contains a large intein.


2013 ◽  
Vol 80 (2) ◽  
pp. 564-573 ◽  
Author(s):  
Nobutaka Nakashima ◽  
Satoshi Ohno ◽  
Katsunori Yoshikawa ◽  
Hiroshi Shimizu ◽  
Tomohiro Tamura

ABSTRACTWe describe here the construction of a series of 71 vectors to silence central carbon metabolism genes inEscherichia coli. The vectors inducibly express antisense RNAs called paired-terminus antisense RNAs, which have a higher silencing efficacy than ordinary antisense RNAs. By measuring mRNA amounts, measuring activities of target proteins, or observing specific phenotypes, it was confirmed that all the vectors were able to silence the expression of target genes efficiently. Using this vector set, each of the central carbon metabolism genes was silenced individually, and the accumulation of metabolites was investigated. We were able to obtain accurate information on ways to increase the production of pyruvate, an industrially valuable compound, from the silencing results. Furthermore, the experimental results of pyruvate accumulation were compared toin silicopredictions, and both sets of results were consistent. Compared to the gene disruption approach, the silencing approach has an advantage in that anyE. colistrain can be used and multiple gene silencing is easily possible in any combination.


2018 ◽  
Vol 6 (13) ◽  
Author(s):  
Katarina Soltys ◽  
Silvia Vavrova ◽  
Jaroslav Budis ◽  
Lenka Palkova ◽  
Gabriel Minarik ◽  
...  

ABSTRACT Here, we report the draft genome sequence of a clinical isolate of the uropathogenic strain Escherichia coli KL53. A total of 5,083,632 bp was de novo assembled into 170 contigs containing 89 RNAs and 5,034 protein-coding genes. Remarkable is the presence of the tellurite resistance ( ter ) operon on a plasmid.


2019 ◽  
Vol 8 (38) ◽  
Author(s):  
Isla Hernandez ◽  
Micah Castillo ◽  
Russell Moreland ◽  
Mei Liu ◽  
Jolene Ramsey

Escherichia coli is a Gram-negative bacterium that is found in humans and animals as both a commensal organism and a pathogen. This report describes the isolation of Sciku, a siphophage infecting E. coli 4s, with 73 protein-coding genes. Genome comparisons suggest that Sciku is related to phages within Guernseyvirinae.


Sign in / Sign up

Export Citation Format

Share Document