scholarly journals RNA-Mediated Reciprocal Regulation between Two Bacterial Operons Is RNase III Dependent

mBio ◽  
2011 ◽  
Vol 2 (5) ◽  
Author(s):  
Christopher M. Johnson ◽  
Heather H. A. Haemig ◽  
Anushree Chatterjee ◽  
Hu Wei-Shou ◽  
Keith E. Weaver ◽  
...  

ABSTRACTIn bacteria, RNAs regulate gene expression and function via several mechanisms. An RNA may pair with complementary sequences in a target RNA to impact transcription, translation, or degradation of the target. Control of conjugation of pCF10, a pheromone response plasmid ofEnterococcus faecalis, is a well-characterized system that serves as a model for the regulation of gene expression in bacteria by intercellular signaling. TheprgQoperon, whose products mediate conjugation, is negatively regulated by two products of theprgXoperon, Anti-Q, a small RNA, and PrgX, the transcriptional repressor of theprgQpromoter. Here we show that Qs, an RNA from the 5′ end of theprgQoperon, represses expression of PrgX by targetingprgXmRNA for cleavage by RNase III. Our results demonstrate that theprgQandprgXoperons each use RNAs to negatively regulate gene expression from the opposing operon by different mechanisms. Such reciprocal regulation between two operons using RNAs has not been previously demonstrated. Furthermore, these results show that Qs is an unusually versatile RNA, serving three separate functions in the regulation of conjugation. Understanding the potential versatility of RNAs and their various roles in gene regulatory networks will allow us to better understand how cells regulate complex behavior.IMPORTANCEBacteria use RNA to regulate gene expression by a variety of mechanisms. TheprgQandprgXoperons of pCF10, a conjugative plasmid ofEnterococcus faecalis, have been shown to negatively regulate one another by a variety of mechanisms. One of these mechanisms involves Anti-Q, a small RNA from theprgXoperon that prevents gene expression from theprgQoperon. In this work, we find that Qs, an RNA from theprgQoperon, negatively regulates gene expression from theprgXoperon. These findings have a number of implications. (i) The Anti-Q and Qs RNAs act by different mechanisms, highlighting the variety of ways in which bacteria can regulate gene expression using RNAs. (ii) Reciprocal regulation between operons mediated by small RNAs has not been previously described, deepening our understanding of how bacteria regulate complex behavior. (iii) Additional roles for Qs have been described, demonstrating the versatility of this RNA.

2019 ◽  
Vol 201 (10) ◽  
Author(s):  
Karan Gautam Kaval ◽  
Margo Gebbie ◽  
Jonathan R. Goodson ◽  
Melissa R. Cruz ◽  
Wade C. Winkler ◽  
...  

ABSTRACT Ethanolamine (EA) is a compound prevalent in the gastrointestinal (GI) tract that can be used as a carbon, nitrogen, and/or energy source. Enterococcus faecalis, a GI commensal and opportunistic pathogen, contains approximately 20 ethanolamine utilization (eut) genes encoding the necessary regulatory, enzymatic, and structural proteins for this process. Here, using a chemically defined medium, two regulatory factors that affect EA utilization were examined. First, the functional consequences of loss of the small RNA (sRNA) EutX on the efficacy of EA utilization were investigated. One effect observed, as loss of this negative regulator causes an increase in eut gene expression, was a concomitant increase in the number of catabolic bacterial microcompartments (BMCs) formed. However, despite this increase, the growth of the strain was repressed, suggesting that the overall efficacy of EA utilization was negatively affected. Second, utilizing a deletion mutant and a complement, carbon catabolite control protein A (CcpA) was shown to be responsible for the repression of EA utilization in the presence of glucose. A predicted cre site in one of the three EA-inducible promoters, PeutS, was identified as the target of CcpA. However, CcpA was shown to affect the activation of all the promoters indirectly through the two-component system EutV and EutW, whose genes are under the control of the PeutS promoter. Moreover, a bioinformatics analysis of bacteria predicted to contain CcpA and cre sites revealed that a preponderance of BMC-containing operons are likely regulated by carbon catabolite repression (CCR). IMPORTANCE Ethanolamine (EA) is a compound commonly found in the gastrointestinal (GI) tract that can affect the behavior of human pathogens that can sense and utilize it, such as Enterococcus faecalis and Salmonella. Therefore, it is important to understand how the genes that govern EA utilization are regulated. In this work, we investigated two regulatory factors that control this process. One factor, a small RNA (sRNA), is shown to be important for generating the right levels of gene expression for maximum efficiency. The second factor, a transcriptional repressor, is important for preventing expression when other preferred sources of energy are available. Furthermore, a global bioinformatics analysis revealed that this second mechanism of transcriptional regulation likely operates on similar genes in related bacteria.


2006 ◽  
Vol 6 ◽  
pp. 1828-1840 ◽  
Author(s):  
Danielle Maatouk ◽  
Brian D. Harfe

Over 10 years ago, the lab of Victor Ambros cloned an unusual gene,lin-4, which encodes two small RNA transcripts[1]. In the past few years, hundreds more of these tiny transcripts, termed microRNAs (miRNAs), have been uncovered in over a dozen species. The functions of the first two miRNAs,lin-4andlet-7, were relatively easy to identify since they were found in forward genetic screens in Caenorhabditis elegans[1,2,3]. However, uncovering the functions of the growing list of miRNAs presents a challenge to developmental biologists. This review will describe our current understanding of how miRNAs regulate gene expression and will focus on the roles these noncoding RNAs play during the development of both invertebrate and vertebrate species.


2015 ◽  
Vol 51 (5) ◽  
pp. 820-831 ◽  
Author(s):  
Gopal Gunanathan Jayaraj ◽  
Smita Nahar ◽  
Souvik Maiti

MicroRNAs (miRNAs) are a class of genomically encoded small RNA molecules (∼22nts in length), which regulate gene expression post transcriptionally. miRNAs are implicated in several diseases, thus modulation of miRNA is of prime importance. Small molecules offer a non-conventional alternative to do so.


1992 ◽  
Vol 66 (1) ◽  
pp. 95-105 ◽  
Author(s):  
A M Colberg-Poley ◽  
L D Santomenna ◽  
P P Harlow ◽  
P A Benfield ◽  
D J Tenney

2019 ◽  
Vol 70 (19) ◽  
pp. 5355-5374 ◽  
Author(s):  
Dandan Zang ◽  
Jingxin Wang ◽  
Xin Zhang ◽  
Zhujun Liu ◽  
Yucheng Wang

Abstract Plant heat shock transcription factors (HSFs) are involved in heat and other abiotic stress responses. However, their functions in salt tolerance are little known. In this study, we characterized the function of a HSF from Arabidopsis, AtHSFA7b, in salt tolerance. AtHSFA7b is a nuclear protein with transactivation activity. ChIP-seq combined with an RNA-seq assay indicated that AtHSFA7b preferentially binds to a novel cis-acting element, termed the E-box-like motif, to regulate gene expression; it also binds to the heat shock element motif. Under salt conditions, AtHSFA7b regulates its target genes to mediate serial physiological changes, including maintaining cellular ion homeostasis, reducing water loss rate, decreasing reactive oxygen species accumulation, and adjusting osmotic potential, which ultimately leads to improved salt tolerance. Additionally, most cellulose synthase-like (CSL) and cellulose synthase (CESA) family genes were inhibited by AtHSFA7b; some of them were randomly selected for salt tolerance characterization, and they were mainly found to negatively modulate salt tolerance. By contrast, some transcription factors (TFs) were induced by AtHSFA7b; among them, we randomly identified six TFs that positively regulate salt tolerance. Thus, AtHSFA7b serves as a transactivator that positively mediates salinity tolerance mainly through binding to the E-box-like motif to regulate gene expression.


2006 ◽  
Vol 3 (2) ◽  
pp. 109-122 ◽  
Author(s):  
◽  
Christopher H. Bryant ◽  
Graham J.L. Kemp ◽  
Marija Cvijovic

Summary We have taken a first step towards learning which upstream Open Reading Frames (uORFs) regulate gene expression (i.e., which uORFs are functional) in the yeast Saccharomyces cerevisiae. We do this by integrating data from several resources and combining a bioinformatics tool, ORF Finder, with a machine learning technique, inductive logic programming (ILP). Here, we report the challenge of using ILP as part of this integrative system, in order to automatically generate a model that identifies functional uORFs. Our method makes searching for novel functional uORFs more efficient than random sampling. An attempt has been made to predict novel functional uORFs using our method. Some preliminary evidence that our model may be biologically meaningful is presented.


Sign in / Sign up

Export Citation Format

Share Document