scholarly journals A Unique Chromosomal Rearrangement in the Cryptococcus neoformans var. grubii Type Strain Enhances Key Phenotypes Associated with Virulence

mBio ◽  
2012 ◽  
Vol 3 (2) ◽  
Author(s):  
Carl A. Morrow ◽  
I. Russel Lee ◽  
Eve W. L. Chow ◽  
Kate L. Ormerod ◽  
Anita Goldinger ◽  
...  

ABSTRACTThe accumulation of genomic structural variation between closely related populations over time can lead to reproductive isolation and speciation. The fungal pathogenCryptococcusis thought to have recently diversified, forming a species complex containing members with distinct morphologies, distributions, and pathologies of infection. We have investigated structural changes in genomic architecture such as inversions and translocations that distinguish the most pathogenic variety,Cryptococcus neoformansvar.grubii, from the less clinically prevalentCryptococcus neoformansvar.neoformansandCryptococcus gattii. Synteny analysis between the genomes of the threeCryptococcusspecies/varieties (strains H99, JEC21, and R265) reveals thatC. neoformansvar.grubiipossesses surprisingly few unique genomic rearrangements. All but one are relatively small and are shared by all molecular subtypes ofC. neoformansvar.grubii. In contrast, the large translocation peculiar to theC. neoformansvar.grubiitype strain is found in all tested subcultures from multiple laboratories, suggesting that it has possessed this rearrangement since its isolation from a human clinical sample. Furthermore, we find that the translocation directly disrupts two genes. The first of these encodes a novel protein involved in metabolism of glucose at human body temperature and affects intracellular levels of trehalose. The second encodes a homeodomain-containing transcription factor that modulates melanin production. Both mutations would be predicted to increase pathogenicity; however, when recreated in an alternate genetic background, these mutations do not affect virulence in animal models. The type strain ofC. neoformansvar.grubiiin which the majority of molecular studies have been performed is therefore atypical for carbon metabolism and key virulence attributes.IMPORTANCEThe fungal pathogenCryptococcusis a major cause of mortality among the immunocompromised population, primarily in AIDS patients of sub-Saharan Africa. Most research into the particular variety ofCryptococcusresponsible for the vast majority of infections,Cryptococcus neoformansvar.grubii, is performed using the type strain isolated in 1978 from a Hodgkin’s disease patient from North Carolina. We have determined that this particular isolate contains a chromosomal translocation that directly interrupts two genes, which all descendants of this strain from various research laboratories appear to possess. Disruption of these two genes affects multiple virulence factors ofCryptococcus, particularly the ability to grow at human body temperature, which could have wide-ranging implications for molecular genetic studies and virulence assays using this important strain.

2021 ◽  
Vol 7 (7) ◽  
Author(s):  
Prashant P. Patil ◽  
Sanjeet Kumar ◽  
Amandeep Kaur ◽  
Samriti Midha ◽  
Kanika Bansal ◽  
...  

Stenotrophomonas maltophilia is a typical example of an environmental originated opportunistic human pathogen, which can thrive at different habitats including the human body and can cause a wide range of infections. It must cope with heat stress during transition from the environment to the human body as the physiological temperature of the human body (37 °C) is higher than environmental niches (22–30 °C). Interestingly, S. rhizophila a phylogenetic neighbour of S. maltophilia within genus Stenotrophomonas is unable to grow at 37 °C. Thus, it is crucial to understand how S. maltophilia is adapted to human body temperature, which could suggest its evolution as an opportunistic human pathogen. In this study, we have performed comparative transcriptome analysis of S. maltophilia grown at 28 and 37 °C as temperature representative for environmental niches and the human body, respectively. RNA-Seq analysis revealed several interesting findings showing alterations in gene-expression levels at 28 and 37 °C, which can play an important role during infection. We have observed downregulation of genes involved in cellular motility, energy production and metabolism, replication and repair whereas upregulation of VirB/D4 type IV secretion system, aerotaxis, cation diffusion facilitator family transporter and LacI family transcriptional regulators at 37 °C. Microscopy and plate assays corroborated altered expression of genes involved in motility. The results obtained enhance our understanding of the strategies employed by S. maltophilia during adaptation towards the human body.


RSC Advances ◽  
2021 ◽  
Vol 11 (41) ◽  
pp. 25731-25737
Author(s):  
Maria Cristina Righetti ◽  
Maria Laura Di Lorenzo ◽  
Patrizia Cinelli ◽  
Massimo Gazzano

At room temperature and at the human body temperature, all the amorphous fraction is mobile in poly(butylene succinate).


2018 ◽  
Vol 164 ◽  
pp. 01017 ◽  
Author(s):  
Jalinas ◽  
Wahyu Kusuma Raharja ◽  
Bobby Putra Emas Wijaya

The heart is one of the most important organs in the human body. One way to know heart health is to measure the number of heart beats per minute and body temperature also shows health, many heart rate and body temperature devices but can only be accessed offline. This research aims to design a heart rate detector and human body temperature that the measurement results can be accessed via web pages anywhere and anytime. This device can be used by many users by entering different ID numbers. The design consists of input blocks: pulse sensor, DS18B20 sensor and 3x4 keypad button. Process blocks: Arduino Mega 2560 Microcontroller, Ethernet Shield, router and USB modem. And output block: 16x2 LCD and mobile phone or PC to access web page. Based on the test results, this tool successfully measures the heart rate with an average error percentage of 2.702 % when compared with the oxymeter tool. On the measurement of body temperature get the result of the average error percentage of 2.18 %.


2019 ◽  
Author(s):  
Myroslava Protsiv ◽  
Catherine Ley ◽  
Joanna Lankester ◽  
Trevor Hastie ◽  
Julie Parsonnet

2021 ◽  
Vol 20 ◽  
pp. 31-39
Author(s):  
Zayed Almheiri ◽  
Rawan Aleid ◽  
Sharul Sham Dol

The purpose of this research is to conduct aerodynamics study and design a hybrid drone system of fixed-wing and multi-copter. The mission of this drone is to measure human body temperature during COVID19 pandemic. The specific aim of the drone is to fly and cover larger industrial areas roughly about 50 km2 with longer flying time than the conventional drone, of about 1.5 hours. The applications of the simulation software such as XFLR5 and ANSYS have a big impact in identifying areas that need to be improved for the drone system. XFLR5 software was used to compare the characteristics of different airfoils with highest lift over drag, L/D ratio. Based on the airfoil selection, it was found that NACA 4412 airfoil produces the highest L/D ratio. The detailed geometry of the drone system includes a fuselage length of 1.9 meters and wingspan of 2 meters. Moreover, 10 sheets of solar panels were placed along the wing for sustainable flight operation to cover wider areas of mission. The structural analysis was done on ANSYS to test the elastic stress, equivalent strain, deformation, factor of safety pressure as well as lift and drag forces under various operational conditions and payloads. The landing gear was analyzed for harsh landing. ANSYS Computational Fluid Dynamics (CFD) was utilized to study the aerodynamics of the drone at different parameters such as the velocities and angles of attack during the operation. This design ensures the stability of the drone during the temperature measurement phase. The best thermal-imaging camera for such purpose would be the Vue Pro R 336, 45° radiometric drone thermal camera with a resolution of 640 x 512 pixels. This camera has the advantage of a permanent continuous out focus that give the ability of taking measurements even if there was changing on the altitude or any kind of vibrations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pooya Afaghi ◽  
Michael Anthony Lapolla ◽  
Khashayar Ghandi

AbstractSARS-CoV-2, the virus that causes COVID-19, is still a widespread threat to society. The spike protein of this virus facilitates viral entry into the host cell. Here, the denaturation of the S1 subunit of this spike protein by 2.45 GHz electromagnetic radiation was studied quantitatively. The study only pertains to the pure electromagnetic effects by eliminating the bulk heating effect of the microwave radiation in an innovative setup that is capable of controlling the temperature of the sample at any desired intensity of the electromagnetic field. This study was performed at the internal human body temperature, 37 °C, for a relatively short amount of time under a high-power electromagnetic field. The results showed that irradiating the protein with a 700 W, 2.45 GHz electromagnetic field for 2 min can denature the protein to around 95%. In comparison, this is comparable to thermal denaturation at 75 °C for 40 min. Electromagnetic denaturation of the proteins of the virus may open doors to potential therapeutic or sanitation applications.


Sign in / Sign up

Export Citation Format

Share Document