scholarly journals Casting Light on the Adaptation Mechanisms and Evolutionary History of the Widespread Sumerlaeota

mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Yun Fang ◽  
Yang Yuan ◽  
Jun Liu ◽  
Geng Wu ◽  
Jian Yang ◽  
...  

ABSTRACT Sumerlaeota is a mysterious, putative phylum-level lineage distributed globally but rarely reported. As such, their physiology, ecology, and evolutionary history remain unknown. The 16S rRNA gene survey reveals that Sumerlaeota is frequently detected in diverse environments globally, especially cold arid desert soils and deep-sea basin surface sediments, where it is one dominant microbial group. Here, we retrieved four Sumerlaeota metagenome-assembled genomes (MAGs) from two hot springs and one saline lake. Including another 12 publicly available MAGs, they represent six of the nine putative Sumerlaeota subgroups/orders, as indicated by 16S rRNA gene-based phylogeny. These elusive organisms likely obtain carbon mainly through utilization of refractory organics (e.g., chitin and cellulose) and proteinaceous compounds, suggesting that Sumerlaeota act as scavengers in nature. The presence of key bidirectional enzymes involved in acetate and hydrogen metabolisms in these MAGs suggests that they are acetogenic bacteria capable of both the production and consumption of hydrogen. The capabilities of dissimilatory nitrate and sulfate reduction, nitrogen fixation, phosphate solubilization, and organic phosphorus mineralization may confer these heterotrophs great advantages to thrive under diverse harsh conditions. Ancestral state reconstruction indicated that Sumerlaeota originated from chemotrophic and facultatively anaerobic ancestors, and their smaller and variably sized genomes evolved along dynamic pathways from a sizeable common ancestor (2,342 genes), leading to their physiological divergence. Notably, large gene gain and larger loss events occurred at the branch to the last common ancestor of the order subgroup 1, likely due to niche expansion and population size effects. IMPORTANCE In recent years, the tree of life has expanded substantially. Despite this, many abundant yet uncultivated microbial groups remain to be explored. The candidate phylum Sumerlaeota is widely distributed in various harsh environments. However, their physiology, adaptation mechanisms, and evolution remain elusive due to a lack of pure cultures and limited available genomes. Here, we used genomes from uncultivated members of Sumerlaeota to disclose why these taxa can thrive under diverse harsh conditions and how they evolved from a chemotrophic and facultatively anaerobic common ancestor. This study deeply explored the biology of Sumerlaeota and provided novel insights into their possible roles in global biogeochemical cycles, adaptation mechanisms, ecological significance, and evolutionary history.

2016 ◽  
Author(s):  
Alejandro Manzano-Marín ◽  
Gitta Szabo ◽  
Jean-Christophe Simon ◽  
Matthias Horn ◽  
Amparo Latorre

SummaryVirtually all aphids maintain an obligate mutualistic symbiosis with bacteria from theBuchneragenus, which produce essential nutrients for their aphid hosts. Most aphids from the Lachninae subfamily have been consistently found to house additional endosymbionts, mainlySerratia symbiotica. This apparent dependence on secondary endosymbionts was proposed to have been triggered by the loss of the riboflavin biosynthetic capability byBuchnerain the Lachninae last common ancestor. However, an integral large-scale analysis of secondary endosymbionts in the Lachninae is still missing, hampering the interpretation of the evolutionary and genomic analyses of these endosymbionts. Here, we analysed the endosymbionts of selected representatives from seven different Lachninae genera and nineteen species, spanning four tribes, both by FISH (exploring the symbionts’ morphology and tissue tropism) and 16S rRNA gene sequencing. We demonstrate that all analysed aphids possess dual symbiotic systems, and while most harbourS. symbiotica, some have undergone symbiont replacement by other phylogenetically-distinct bacterial taxa. We found that these secondary associates display contrasting cell shapes and tissue tropism, and some appear to be lineage-specific. a scenario for symbiont establishment in the Lachninae, followed by changes in the symbiont’s tissue tropism and symbiont replacement events, thereby highlighting the extraordinary versatility of host-symbiont interactions.Originality-Significance StatementA key question in evolutionary biology is that of how mutualism evolves. One way to approach this problem is to investigate recently-established mutualistic associations, particularly by comparing various symbiotic systems in closely related hosts. Here, we present a most comprehensive study to investigate co-obligate symbioses in aphids, focusing in the Lachninae subfamily. While most aphids keep an obligate vertically-transmitted association with intracellularBuchnerabacteria, some, such as members of the Lachninae subfamily, host an additional putative co-obligate symbiont. Thus, the Lachninae dual symbiotic systems offer a unique opportunity to understand the evolutionary dynamics of host-symbiont associations, in particularly how secondary symbionts become obligate and eventually may be replaced. Through genome sequencing of three aphid species belonging to distantly related tribes within the subfamily, we have previously corroborated that they have indeed established co-obligate mutualistic associations with theS. symbioticasecondary endosymbiotic bacterium. This was putatively facilitated by an ancient pseudogenisation of the riboflavin biosynthetic pathway inBuchnera, rendering it unable to provide the essential vitamin to the host. However, not all Lachninae members harbourS. symbiotica, some species being associated to at least four different bacterial taxa. To correctly interpret the genomic data and to understand the evolutionary dynamics of these symbiotic associations, a wide-range analysis of both the phylogenetic relations as well as of the secondary symbionts’ localisation within the bacteriome is needed. To tackle this, we have combined phylogenetic analyses of the symbionts’ 16S rRNA gene sequences and FISH microscopy, to understand the symbiont’s identity as well as the morphological characteristics and tissue tropism. The phylogenetic affinities and patterns of co-divergence of the symbionts, in combination with previously published genomic data, have enabled us to build an evolutionary scenario for the establishment, changes in tissue tropism such as “stable” internalisation into bacteriocytes, and replacements of the putative “ancient” secondary endosymbiont from the Lachninae last common ancestor. Also, we were able to determine through phylogenetic analyses that some putative co-obligate endosymbionts may have evolved from once facultative ones. The evolutionary framework presented here reveals a dynamic pattern for the more recent evolutionary history of these symbioses, including replacement and novel acquisition of phylogenetically different co-obligate symbionts. This study opens new research avenues on this symbiont-diverse subfamily, providing insight into how mutualism in endosymbiotic associations can evolve, and the role these bacteria have played in the species’ adaptation and even in the speciation process.


2020 ◽  
Vol 70 (12) ◽  
pp. 6408-6413 ◽  
Author(s):  
Miho Watanabe ◽  
Hisaya Kojima ◽  
Manabu Fukui

A novel facultatively anaerobic, nitrate-reducing bacterium, designated MeG22T, was isolated from a freshwater lake in Japan. Cells of the strain were straight rods (0.8×2.5–10 µm), motile, and Gram-stain-negative. For growth, the optimum NaCl concentration was 0 % and the optimum temperature was 30 °C. Under anoxic conditions, strain MeG22T reduced nitrate to nitrite. Major cellular fatty acids were C15 : 1 ω6c (13.6 %), C17 : 0 (11.9 %), anteiso-C15 : 0 (10.6 %) and iso-C15 : 0 (10.6 %). The major respiratory quinone was menaquinone-7. The genome sequence of strain MeG22T consists of 5 712 279 bp with a G+C content of 40.3 mol%. Phylogenetic analysis based on the 16S rRNA gene revealed that the novel strain belonged to the family Prolixibacteraceae within the phylum Bacteroidetes . The closest relative of strain MeG22T was Sunxiuqinia faeciviva strain JAM-BA0302T with a 16S rRNA gene sequence similarity of 90.9 %. On the basis of phylogenetic and phenotypic characterization, Aquipluma nitroreducens, gen. nov., sp. nov., belonging to the family Prolixibacteraceae is proposed with the type strain MeG22T (=NBRC 112896T=DSM 106262T).


2010 ◽  
Vol 60 (3) ◽  
pp. 560-565 ◽  
Author(s):  
Yi-Guang Chen ◽  
Yu-Qin Zhang ◽  
Lang-Bo Yi ◽  
Zhao-Yang Li ◽  
Yong-Xiao Wang ◽  
...  

A facultatively anaerobic, moderately halophilic, Gram-positive, endospore-forming, motile, catalase- and oxidase-positive, rod-shaped bacterium, strain JSM 072002T, was isolated from a sea anemone (Anthopleura xanthogrammica) collected from the South China Sea. Strain JSM 072002T was able to grow with 0.5–15 % (w/v) NaCl and at pH 6.0–10.0 and 15–50 °C; optimum growth was observed with 2–5 % (w/v) NaCl and at pH 7.5 and 35 °C. meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The major cellular fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The predominant respiratory quinone was menaquinone 7 and the genomic DNA G+C content was 41.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 072002T should be assigned to the genus Pontibacillus and revealed relatively low 16S rRNA gene sequence similarities (<97 %) with the type strains of the three recognized Pontibacillus species (Pontibacillus chungwhensis BH030062T, 96.8 %; Pontibacillus marinus KCTC 3917T, 96.7 %; Pontibacillus halophilus JSM 076056T, 96.0 %). The combination of phylogenetic analysis, DNA–DNA relatedness values, phenotypic characteristics and chemotaxonomic data supports the view that strain JSM 072002T represents a novel species of the genus Pontibacillus, for which the name Pontibacillus litoralis sp. nov. is proposed. The type strain is JSM 072002T (=DSM 21186T=KCTC 13237T). An emended description of the genus Pontibacillus is also presented.


2011 ◽  
Vol 61 (8) ◽  
pp. 1767-1775 ◽  
Author(s):  
Man Cai ◽  
Lu Wang ◽  
Hua Cai ◽  
Yan Li ◽  
Ya-Nan Wang ◽  
...  

Four bacterial strains, SL014B-41A4T, SL014B-20A1T, SL014B-76A1 and SL014B-79A, isolated from a crude oil-contaminated saline soil of Shengli Oilfield, China, were investigated using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain SL014B-41A4T belonged to the genus Salinarimonas in the order Rhizobiales, with the highest sequence similarity with Salinarimonas rosea YIM YD3T (98.3 %). The DNA–DNA relatedness of strain SL014B-41A4T to S. rosea YIM YD3T was 27.03±3.0 %. Strain SL014B-41A4T was Gram-negative staining, facultatively anaerobic and produced deep red pigment in artificial seawater medium. Cells of strain SL014B-41A4T were rod-shaped (0.6–4.0×1.25–25 µm), motile with a single polar flagellum and often formed branches. The strain contained Q-10 as the predominant respiratory ubiquinone and C18 : 1ω7c (57.5 %), C16 : 0 (16.4 %) and 10-methyl C19 : 0 (9.1 %) as the major fatty acids. Strains SL014B-20A1T, SL014B-76A1 and SL014B-79A were actinobacteria and belonged to the genus Tessaracoccus in the family Propionibacteriaceae of the order Actinomycetales with the highest 16S rRNA gene sequence similarities with Tessaracoccus flavescens SST-39T (96.4 %), Tessaracoccus lubricantis KISS-17SeT (96.2 %) and Tessaracoccus bendigoensis Ben 106T (94.7 %). Strains SL014B-20A1T, SL014B-76A1 and SL014B-79A were Gram-positive staining, facultatively anaerobic, non-endospore-forming, non-motile, acid-fast and oval to rod-shaped (0.48×0.5–1.0 µm). These three novel strains had ll-diaminopimelic acid (DAP) as the diagnostic diamino acid in the cell-wall peptidoglycan, MK-9(H4) as the only menaquinone and anteiso-C15 : 0 (67.11–76.14 %) as the major cellular fatty acid. The G+C contents of the genomic DNA of strain SL014B-41A4T and strains SL014B-20A1T, SL014B-76A1 and SL014B-79A were 67.68 mol% and 65.65–67.17 mol%, respectively. Based on phenotypic and genotypic characteristics, strain SL014B-41A4T represents a novel species of the genus Salinarimonas, for which the name Salinarimonas ramus is proposed, with strain SL014B-41A4T ( = DSM 22962T = CGMCC 1.9161T) as the type strain. Strains SL014B-20A1T, SL014B-76A1 and SL014B-79A represent a novel species of the genus Tessaracoccus, for which the name Tessaracoccus oleiagri is proposed, with strain SL014B-20A1T ( = DSM 22955T = CGMCC 1.9159T) as the type strain.


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2378-2384 ◽  
Author(s):  
Miho Watanabe ◽  
Hisaya Kojima ◽  
Manabu Fukui

A novel facultatively anaerobic bacterium, strain HC45T, was isolated from sediment of a brackish meromictic lake in Japan, Lake Harutori. Cells were pleomorphic, and filamentous bodies were 5–100 μm in length. For growth, the optimum pH was 7.0 and the optimum temperature was 45–50 °C. The G+C content of the genomic DNA was 71 mol%. iso-C15 : 0 and anteiso-C15 : 0 were the major components in the cellular fatty acid profile. The predominant respiratory quinone was MK-7. Strain HC45T shared very low 16S rRNA gene sequence similarity with cultivated strains ( ≤ 85 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate was distantly related to members of the family Symbiobacteriaceae and family XVII Incertae Sedis in the class Clostridia, and they formed a cluster separate from canonical species of the phylum Firmicutes. These results indicated that strain HC45T should not be placed in any existing class of the phylum Firmicutes. On the basis of phylogenetic and phenotypic characterization, Limnochorda pilosa gen. nov., sp. nov. is proposed with HC45T ( = NBRC 110152T = DSM 28787T) as the type strain, as the first representative of novel taxa, Limnochordales ord. nov., Limnochordaceae fam. nov. in Limnochordia classis. nov.


2020 ◽  
Author(s):  
Hao Li ◽  
Jan P. Meier-Kolthoff ◽  
Can-Xin Hu ◽  
Zhong-Jie Wang ◽  
Jun Zhu ◽  
...  

AbstractPrevotella copri and related taxa are widely detected in mammalian gut microbiomes and have been linked with one human enterotype. However, their microevolution and macroevolution among hosts are poorly characterized. In this study, extensively collected marker genes and genomes were analyzed to trace their evolutionary history, host specificity, and biogeographic distribution. Investigations based on 16S rRNA gene, gyrB, and genomes suggested that a multi-specific P. copri-containing lineage (PCL) harbors diverse species in higher primates. Firstly, P. copri is the dominant species of PCL in the human gut and consists of multiple groups exhibiting high genomic divergence and conspicuous but non-strict biogeographic pattern. Most African strains with high genomic divergence from other strains were phylogenetically placed near the species root, indicating the co-evolutionary history of P. copri and Homo sapiens. Secondly, although long-term co-evolution between PCL and higher primates was revealed, sporadic signals of co-speciation and extensive host jumping of PCL members were observed among higher primates. Metagenomic and phylogenetic analyses indicated that P. copri and other PCL species found in captive mammals have been recently transmitted from humans. Thirdly, strong evidence was found on the extensively horizontal transfer of genes (e.g., carbohydrate-active enzyme encoding genes) among sympatric P. copri groups and PCL species in the same primate host. Our study provides panoramic insights into the complex effects of vertical and horizontal transmission, and potential niche adaption on speciation, host, and biogeographical distribution spanning microevolutionary and macroevolutionary history for a certain gut bacterial lineage.ImportancePrevotella copri and its related taxa, which we designated as Prevotella copri-containing lineage (PCL) in the present study, are widely detected in guts of human, non-human primates and many captive mammals, showing positive or negative correlation to some human diseases. However, a comprehensive understanding on its microevolutionary (within P. copri) and macroevolutionary (among PCL members) history across host species and host biogeography is still lacking. According to our analysis based on 16S rRNA gene, gyrB and genomes, we provided the panoramic insights into the putative effects of vertical transfer, horizontal transmission and potential niche selection on host and biogeographical distribution of this gut bacterial lineage and P. copri. To our knowledge, it is the first time that a gut bacterial lineage was studied at both micro- and macroevolutionary levels, which can aid our systematic understanding on the host-microbe co-evolutionary interactions.


2015 ◽  
Vol 41 (1) ◽  
pp. 51-58
Author(s):  
Mohammad Shamimul Alam ◽  
Hawa Jahan ◽  
Rowshan Ara Begum ◽  
Reza M Shahjahan

Heteropneustesfossilis, Clariasbatrachus and C. gariepinus are three major catfishes ofecological and economic importance. Identification of these fish species becomes aproblem when the usual external morphological features of the fish are lost or removed,such as in canned fish. Also, newly hatched fish larva is often difficult to identify. PCRsequencingprovides accurate alternative means of identification of individuals at specieslevel. So, 16S rRNA genes of three locally collected catfishes were sequenced after PCRamplification and compared with the same gene sequences available from othergeographical regions. Multiple sequence alignment of the 16S rRNA gene fragments ofthe catfish species has revealed polymorphic sites which can be used to differentiate thesethree species from one another and will provide valuable insight in choosing appropriaterestriction enzymes for PCR-RFLP based identification in future. Asiat. Soc. Bangladesh, Sci. 41(1): 51-58, June 2015


2020 ◽  
Vol 139 ◽  
pp. 161-174
Author(s):  
R Palmer ◽  
GTA Fleming ◽  
S Glaeser ◽  
T Semmler ◽  
A Flamm ◽  
...  

During 1992 and 1993, a bacterial disease occurred in a seawater Atlantic salmon Salmo salar farm, causing serious mortalities. The causative agent was subsequently named as Oceanivirga salmonicida, a member of the Leptotrichiaceae. Searches of 16S rRNA gene sequence databases have shown sequence similarities between O. salmonicida and uncultured bacterial clones from the digestive tracts of marine mammals. In the current study, oral samples were taken from stranded dolphins (common dolphin Delphinus delphis, striped dolphin Stenella coeruleoalba) and healthy harbour seals Phoca vitulina. A bacterium with growth characteristics consistent with O. salmonicida was isolated from a common dolphin. The isolate was confirmed as O. salmonicida, by comparisons to the type strain, using 16S rRNA gene, gyrB, groEL, and recA sequence analyses, average nucleotide identity analysis, and MALDI-TOF mass spectrometry. Metagenomic analysis indicated that the genus Oceanivirga represented a significant component of the oral bacterial microbiomes of the dolphins and seals. However, sequences consistent with O. salmonicida were only found in the dolphin samples. Analyses of marine mammal microbiome studies in the NCBI databases showed sequences consistent with O. salmonicida from the common dolphin, striped dolphin, bottlenose dolphin Tursiops truncatus, humpback whale Megaptera novaeangliae, and harbour seal. Sequences from marine environmental studies in the NCBI databases showed no sequences consistent with O. salmonicida. The findings suggest that several species of marine mammals are natural hosts of O. salmonicida.


2020 ◽  
Author(s):  
CC Kim ◽  
WJ Kelly ◽  
ML Patchett ◽  
GW Tannock ◽  
Z Jordens ◽  
...  

© 2017 IUMS. A novel anaerobic pectinolytic bacterium (strain 14T) was isolated from human faeces. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 14T belonged to the family Ruminococcaceae, but was located separately from known clostridial clusters within the taxon. The closest cultured relative of strain 14T was Acetivibrio cellulolyticus (89.7% sequence similarity). Strain 14T shared ~99% sequence similarity with cloned 16S rRNA gene sequences from uncultured bacteria derived from the human gut. Cells were Gram-stain-positive, non-motile cocci approximately 0.6μm in diameter. Strain 14T fermented pectins from citrus peel, apple, and kiwifruit as well as carbohydrates that are constituents of pectins and hemicellulose, such as galacturonic acid, xylose, and arabinose. TEM images of strain 14T, cultured in association with plant tissues, suggested extracellular fibrolytic activity associated with the bacterial cells, forming zones of degradation in the pectin-rich regions of middle lamella. Phylogenetic and phenotypic analysis supported the differentiation of strain 14T as a novel genus in the family Ruminococcaceae. The name Monoglobus pectinilyticus gen. nov., sp. nov. is proposed; the type strain is 14T (JCM 31914T=DSM 104782T).


Sign in / Sign up

Export Citation Format

Share Document