scholarly journals Molecular Insight into TdfH-Mediated Zinc Piracy from Human Calprotectin by Neisseria gonorrhoeae

mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Michael T. Kammerman ◽  
Aloke Bera ◽  
Runrun Wu ◽  
Simone A. Harrison ◽  
C. Noel Maxwell ◽  
...  

ABSTRACT Neisseria gonorrhoeae, responsible for the sexually transmitted infection gonorrhea, is an obligate human pathogen exquisitely adapted for survival on mucosal surfaces of humans. This host-pathogen relationship has resulted in evolution by N. gonorrhoeae of pathways that enable the use of host metalloproteins as required nutrients through the deployment of outer membrane-bound TonB-dependent transporters (TdTs). Recently, a TdT called TdfH was implicated in binding to calprotectin (CP) and in removal of the bound zinc (Zn), enabling gonococcal growth. TdfH is highly conserved among the pathogenic Neisseria species, making it a potentially promising candidate for inclusion into a gonococcal vaccine. Currently, the nature and specificity of the TdfH-CP interaction have not been determined. In this study, we found that TdfH specifically interacted with human calprotectin (hCP) and that growth of the gonococcus was supported in a TdfH-dependent manner only when hCP was available as a sole zinc source and not when mouse CP was provided. The binding interactions between TdfH and hCP were assessed using isothermal titration calorimetry where we observed a multistate model having both high-affinity and low-affinity sites of interaction. hCP has two Zn binding sites, and gonococcal growth assays using hCP mutants deficient in one or both of the Zn binding sites revealed that TdfH exhibited a site preference during Zn piracy and utilization. This report provides the first insights into the molecular mechanism of Zn piracy by neisserial TdfH and further highlights the obligate human nature of N. gonorrhoeae and the high-affinity interactions occurring between TdTs and their human ligands during pathogenesis. IMPORTANCE The dramatic rise in antimicrobial resistance among Neisseria gonorrhoeae isolates over the last few decades, paired with dwindling treatment options and the lack of a protective vaccine, has prompted increased interest in identifying new bacterial targets for the treatment and, ideally, prevention of gonococcal disease. TonB-dependent transporters are a conserved set of proteins that serve crucial functions for bacterial survival within the host. In this study, binding between the gonococcal transporter, TdfH, and calprotectin was determined to be of high affinity and host restricted. The current study identified a preferential TdfH interaction at the calprotectin dimer interface. An antigonococcal therapeutic could potentially block this site on calprotectin, interrupting Zn uptake by N. gonorrhoeae and thereby prohibiting continued bacterial growth. We describe protein-protein interactions between TdfH and calprotectin, and our findings provide the building blocks for future therapeutic or prophylactic targets.

2016 ◽  
Vol 84 (10) ◽  
pp. 2982-2994 ◽  
Author(s):  
Sophonie Jean ◽  
Richard A. Juneau ◽  
Alison K. Criss ◽  
Cynthia N. Cornelissen

Neisseria gonorrhoeaesuccessfully overcomes host strategies to limit essential nutrients, termed nutritional immunity, by production of TonB-dependent transporters (TdTs)—outer membrane proteins that facilitate nutrient transport in an energy-dependent manner. Four gonococcal TdTs facilitate utilization of iron or iron chelates from host-derived proteins, including transferrin (TbpA), lactoferrin (LbpA), and hemoglobin (HpuB), in addition to xenosiderophores from other bacteria (FetA). The roles of the remaining four uncharacterized TdTs (TdfF, TdfG, TdfH, and TdfJ) remain elusive. Regulatory data demonstrating that production of gonococcal TdfH and TdfJ are unresponsive to or upregulated under iron-replete conditions led us to evaluate the role of these TdTs in the acquisition of nutrients other than iron. In this study, we found that production of gonococcal TdfH is both Zn and Zur repressed. We also found that TdfH confers resistance to calprotectin, an immune effector protein highly produced in neutrophils that has antimicrobial activity due to its ability to sequester Zn and Mn. We found that TdfH directly binds calprotectin, which enables gonococcal Zn accumulation in a TdfH-dependent manner and enhances bacterial survival after exposure to neutrophil extracellular traps (NETs). These studies highlight Zn sequestration by calprotectin as a key functional arm of NET-mediated killing of gonococci. We demonstrate for the first time thatN. gonorrhoeaeexploits this host strategy in a novel defense mechanism, in which TdfH production hijacks and directly utilizes the host protein calprotectin as a zinc source and thereby evades nutritional immunity.


mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Egon A. Ozer ◽  
Lauren L. Prister ◽  
Shaohui Yin ◽  
Billy H. Ward ◽  
Stanimir Ivanov ◽  
...  

ABSTRACT Gene diversification is a common mechanism pathogens use to alter surface structures to aid in immune avoidance. Neisseria gonorrhoeae uses a gene conversion-based diversification system to alter the primary sequence of the gene encoding the major subunit of the pilus, pilE. Antigenic variation occurs when one of the nonexpressed 19 silent copies donates part of its DNA sequence to pilE. We have developed a method using Pacific Biosciences (PacBio) amplicon sequencing and custom software to determine pilin antigenic variation frequencies. The program analyzes 37 variable regions across the strain FA1090 1-81-S2 pilE gene and can be modified to determine sequence variation from other starting pilE sequences or other diversity generation systems. Using this method, we measured pilin antigenic variation frequencies for various derivatives of strain FA1090 and showed we can also analyze pilin antigenic variation frequencies during macrophage infection. IMPORTANCE Diversity generation systems are used by many unicellular organism to provide subpopulations of cell with different properties that are available when needed. We have developed a method using the PacBio DNA sequencing technology and a custom computer program to analyze the pilin antigenic variation system of the organism that is the sole cause of the sexually transmitted infection, gonorrhea.


1977 ◽  
Author(s):  
K. Subbarao ◽  
B. Rucinski ◽  
A. Summers ◽  
S. Niewiarowski

The interactions of dipyridamole with α1-acid glycoprotein of plasma and with human platelets are related to inhibition of adenosine uptake by platelets. One mole of dipyridamole binds to one mole of α1-acid glycoprotein with a dissociation constant (Kd) of 1.3 μM. It was found that platelets contain both high and low affinity binding sites for the drug. The binding of dipyridamole to the high affinity sites follows a Michaelis Menten binding pattern with a Kd of 0.04 μM. Approximately 2x104 dipyridamole molecules are bound at the high affinity sites of each platelet. The lower affinity sites bind the drug with a Kd of 4 μM. In the presence of α1acid glycoprotein the binding of dipyridamole to platelets is inhibited. Correspondingly, the dipyridamole inhibition of adenosine uptake by platelets is reduced 1000-fold by α1acid glycoprotein. Binding of dipyridamole to human platelets is essential for its inhibition of adenosine uptake by platelets. Dipyridamole reduced the [14C]-ATP to [14C]-ADP ratio in the platelets. Purified α1acid glycoprotein reversed these effects of dipyridamole on adenosine metabolism of platelets in a concentration dependent manner. A correlationwas observed between the level of circulating dipyridamole in plasma and the inhibition of [14C]-adenosine uptake by platelets of PRP samples of 12 human volunteers given different amounts of dipyridamole. The in vitro and ex vivo effects of dipyridamole on the [14C]-adenosine uptake by platelets were found to be identical. Our data suggest the presence of dipyridamole binding sites in platelets that regulate adenosine transport across the cell surface.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Meinan Lyu ◽  
Mitchell A. Moseng ◽  
Jennifer L. Reimche ◽  
Concerta L. Holley ◽  
Vijaya Dhulipala ◽  
...  

ABSTRACT Neisseria gonorrhoeae is an obligate human pathogen and causative agent of the sexually transmitted infection (STI) gonorrhea. The most predominant and clinically important multidrug efflux system in N. gonorrhoeae is the multiple transferrable resistance (Mtr) pump, which mediates resistance to a number of different classes of structurally diverse antimicrobial agents, including clinically used antibiotics (e.g., β-lactams and macrolides), dyes, detergents and host-derived antimicrobials (e.g., cationic antimicrobial peptides and bile salts). Recently, it has been found that gonococci bearing mosaic-like sequences within the mtrD gene can result in amino acid changes that increase the MtrD multidrug efflux pump activity, probably by influencing antimicrobial recognition and/or extrusion to elevate the level of antibiotic resistance. Here, we report drug-bound solution structures of the MtrD multidrug efflux pump carrying a mosaic-like sequence using single-particle cryo-electron microscopy, with the antibiotics bound deeply inside the periplasmic domain of the pump. Through this structural approach coupled with genetic studies, we identify critical amino acids that are important for drug resistance and propose a mechanism for proton translocation. IMPORTANCE Neisseria gonorrhoeae has become a highly antimicrobial-resistant Gram-negative pathogen. Multidrug efflux is a major mechanism that N. gonorrhoeae uses to counteract the action of multiple classes of antibiotics. It appears that gonococci bearing mosaic-like sequences within the gene mtrD, encoding the most predominant and clinically important transporter of any gonococcal multidrug efflux pump, significantly elevate drug resistance and enhance transport function. Here, we report cryo-electron microscopy (EM) structures of N. gonorrhoeae MtrD carrying a mosaic-like sequence that allow us to understand the mechanism of drug recognition. Our work will ultimately inform structure-guided drug design for inhibiting these critical multidrug efflux pumps.


1992 ◽  
Vol 263 (6) ◽  
pp. F1020-F1025 ◽  
Author(s):  
R. M. Edwards ◽  
M. Pullen ◽  
P. Nambi

The effects of endothelins (ET) on guanosine 3',5'-cyclic monophosphate (cGMP) levels in intact rat glomeruli were examined. ET-3 produced a rapid approximately fivefold increase in cGMP levels with the maximum effect occurring at 1 min. The ET-3-induced increase in cGMP accumulation occurred in the absence and presence of 3-isobutyl-1-methylxanthine. ET-1, ET-2, ET-3, and the structurally related toxin, sarafotoxin S6c, all increased glomerular cGMP levels in a concentration-dependent manner and with similar potencies (EC50 approximately 15-30 nM). The L-arginine analogue, N omega-nitro-L-arginine (L-NNA), reduced basal levels of cGMP and also totally inhibited ET-induced increases in cGMP as did methylene blue, an inhibitor of soluble guanylate cyclase. The effect of L-NNA was attenuated by L-arginine but not by D-arginine. The stimulation of cGMP accumulation by ET-3 was dependent on extracellular Ca2+ and was additive to atriopeptin III but not to acetylcholine. The ETA-selective antagonist, BQ 123, had no effect on ET-3-induced formation of cGMP. Glomerular membranes displayed high-affinity (Kd = 130-150 pM) and high-density (approximately 2.0 pmol/mg) binding sites for 125I-ET-1 and 125I-ET-3. ET-1, ET-3, and sarafotoxin S6c displaced 125I-ET-1 binding to glomerular membranes with similar affinities. BQ 123 had no effect on 125I-ET-1 binding. We conclude that ET increases cGMP levels in glomeruli by stimulating the formation of a nitric oxide-like factor that activates soluble guanylate cyclase. This effect of ET appears to be mediated by activation of ETB receptors and may serve to modulate the contractile effects of ET.


1990 ◽  
Vol 73 (5) ◽  
pp. 743-749 ◽  
Author(s):  
Uwe M. H. Schrell ◽  
Eric F. Adams ◽  
Rudolf Fahlbusch ◽  
Robert Greb ◽  
Gustav Jirikowski ◽  
...  

✓ Female sex steroid receptors were examined in 50 human cerebral meningiomas. For estrogen receptors, high-affinity binding sites (dissociation constant (Kd): 0.05 to 0.2 nM) were found in the cytosolic fraction with a capacity of less than 4 fmol/mg protein in 10 meningiomas using a dextran-coated charcoal (DCC) assay. In the same cytosolic fraction, the solid-phase enzyme immunoassay revealed only one cytosol with a positive colorimetric reaction equal to 5 fmol/mg protein. However, in the nuclear compartment, none of the tumors stained positively for estrogen receptors with immunohistochemical techniques. In addition, the most convincing evidence for the absence of estrogen receptors was obtained by in situ hybridization using an oligonucleotide probe complementary to a fraction of the human receptor messenger ribonucleic acid (mRNA). In none of the 50 meningiomas was the expression of estrogen mRNA coding for the estrogen receptor detected. For progesterone receptors, high-affinity binding sites (Kd: 0.3 to 2.6 nM) were found in 49 of the 50 tumors using a DCC assay. In the same cytosols, solid-phase enzyme immunoassay revealed that each tumor was positive for progesterone receptors. However, in the nuclear compartment, only five tumors had partially positive staining for progesterone receptors with immunohistochemical techniques. Within the confines of this study, it is concluded that: 1) the estrogen receptor is generally absent in meningioma tissue, and 2) the progesterone receptor is mainly absent in the nuclear compartment, leading to the conclusion that the cytosolic progesterone receptor may be an inactive form. This study suggests that female sex steroid receptors are not primarily involved in the proliferative rate of cerebral meningiomas and that they are of no current significance as markers for adjuvant medical therapy of most meningiomas.


2020 ◽  
Vol 9 (21) ◽  
Author(s):  
Freda E.-C. Jen ◽  
Ibrahim M. El-Deeb ◽  
John M. Atack ◽  
Mark von Itzstein ◽  
Michael P. Jennings

ABSTRACT Neisseria gonorrhoeae causes the sexually transmitted infection gonorrhea. High-coverage (∼3,300-fold) transcriptome sequencing data have been collected from multidrug-resistant N. gonorrhoeae strain WHO Z grown in the presence and absence of PBT2.


2005 ◽  
Vol 280 (23) ◽  
pp. 21726-21730 ◽  
Author(s):  
M. Satish Kumar ◽  
Mili Kapoor ◽  
Sharmistha Sinha ◽  
G. Bhanuprakash Reddy

α-Crystallin, composed of two subunits, αA and αB, has been shown to function as a molecular chaperone that prevents aggregation of other proteins under stress conditions. The exposed hydrophobic surfaces of α-crystallins have been implicated in this process, but their exact role has not been elucidated. In this study, we quantify the hydrophobic surfaces of αA- and αB-crystallins by isothermal titration calorimetry using 8-anilino-1-napthalenesulfonic acid (ANS) as a hydrophobic probe and analyze its correlation to the chaperone potential of αA- and αB-crystallins under various conditions. Two ANS binding sites, one with low and another with high affinity, were clearly detected, with αB showing a higher number of sites than αA at 30 °C. In agreement with the higher number of hydrophobic sites, αB-crystallin demonstrated higher chaperone activity than αA at this temperature. Thermodynamic analysis of ANS binding to αA- and αB-crystallins indicates that high affinity binding is driven by both enthalpy and entropy changes, with entropy dominating the low affinity binding. Interestingly, although the number of ANS binding sites was similar for αA and αB at 15 °C, αA was more potent than αB in preventing aggregation of the insulin B-chain. Although there was no change in the number of high affinity binding sites of αA and αB for ANS upon preheating, there was an increase in the number of low affinity sites of αA and αB. Preheated αA, in contrast to αB, exhibited remarkably enhanced chaperone activity. Our results indicate that although hydrophobicity appears to be a factor in determining the chaperone-like activity of α-crystallins, it does not quantitatively correlate with the chaperone function of α-crystallins.


2015 ◽  
Vol 54 (1) ◽  
pp. 200-203 ◽  
Author(s):  
Jan Henk Dubbink ◽  
Dewi J. de Waaij ◽  
Myrte Bos ◽  
Lisette van der Eem ◽  
Cécile Bébéar ◽  
...  

We analyzed data of 263 women with at least one genital or anorectal sexually transmitted infection from a cross-sectional study conducted in rural South Africa. We provide new insights concerning the concurrence ofChlamydia trachomatis,Neisseria gonorrhoeae,Mycoplasma genitalium, andTrichomonas vaginalisinfections as well as the characteristics of bacterial loads.


2014 ◽  
Vol 82 (10) ◽  
pp. 4021-4033 ◽  
Author(s):  
Stephanie Dolinsky ◽  
Ina Haneburger ◽  
Adam Cichy ◽  
Mandy Hannemann ◽  
Aymelt Itzen ◽  
...  

ABSTRACTLegionellaspp. cause the severe pneumonia Legionnaires' disease. The environmental bacteria replicate intracellularly in free-living amoebae and human alveolar macrophages within a distinct, endoplasmic reticulum (ER)-derived compartment termed theLegionella-containing vacuole (LCV). LCV formation requires the bacterial Icm/Dot type IV secretion system (T4SS) that translocates into host cells a plethora of different “effector” proteins, some of which anchor to the pathogen vacuole by binding to phosphoinositide (PI) lipids. Here, we identified by unbiased pulldown assays inLegionella longbeachaelysates a 111-kDa SidC homologue as the major phosphatidylinositol 4-phosphate [PtdIns(4)P]-binding protein. The PI-binding domain was mapped to a 20-kDa P4C [PtdIns(4)Pbinding of SidC] fragment. Isothermal titration calorimetry revealed that SidC ofL. longbeachae(SidCLlo) binds PtdIns(4)Pwith aKd(dissociation constant) of 71 nM, which is 3 to 4 times lower than that of the SidC orthologue ofLegionella pneumophila(SidCLpn). Upon infection of RAW 264.7 macrophages withL. longbeachae, endogenous SidCLloor ectopically produced SidCLpnlocalized in an Icm/Dot-dependent manner to the PtdIns(4)P-positive LCVs. AnL. longbeachaeΔsidCdeletion mutant was impaired for calnexin recruitment to LCVs inDictyostelium discoideumamoebae and outcompeted by wild-type bacteria inAcanthamoeba castellanii. Calnexin recruitment was restored by SidCLloor its orthologues SidCLpnand SdcALpn. Conversely, calnexin recruitment was restored by SidCLloinL. pneumophilalackingsidCandsdcA. Together, biochemical, genetic, and cell biological data indicate that SidCLlois anL. longbeachaeeffector that binds through a P4C domain with high affinity to PtdIns(4)Pon LCVs, promotes ER recruitment to the LCV, and thus plays a role in pathogen-host interactions.


Sign in / Sign up

Export Citation Format

Share Document