scholarly journals Physiological Heterogeneity Triggers Sibling Conflict Mediated by the Type VI Secretion System in an Aggregative Multicellular Bacterium

mBio ◽  
2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Vera Troselj ◽  
Anke Treuner-Lange ◽  
Lotte Søgaard-Andersen ◽  
Daniel Wall

ABSTRACTA hallmark of social microorganisms is their ability to engage in complex and coordinated behaviors that depend on cooperative and synchronized actions among many cells. For instance, myxobacteria use an aggregation strategy to form multicellular, spore-filled fruiting bodies in response to starvation. One barrier to the synchronization process is physiological heterogeneity within clonal populations. How myxobacteria cope with these physiological differences is poorly understood. Here, we investigated the interactions between closely related but physiologically distinctMyxococcus xanthuspopulations. We used a genetic approach to create amino acid auxotrophs and tested how they interact with a parental prototroph strain. Importantly, we found that auxotrophs were killed by their prototroph siblings when the former were starved for amino acids but not when grown on rich medium or when both strains were starved. This antagonism depended on the type VI secretion system (T6SS) as well as gliding motility; in particular, we identified the effector-immunity pair (TsxEI) as the mediator of this killing. This sibling antagonism resulted from lower levels of the TsxI immunity protein in the starved population. Thus, when starving auxotrophs were mixed with nonstarving prototrophs, the auxotrophs were susceptible to intoxication by the TsxE effector delivered by the T6SS from the prototrophs. Furthermore, our results suggested that homogeneously starving populations have reduced T6SS activity and, therefore, do not antagonize each other. We conclude that heterogeneous populations ofM. xanthususe T6SS-dependent killing to eliminate starving or less-fit cells, thus facilitating the attainment of homeostasis within a population and the synchronization of behaviors.IMPORTANCESocial bacteria employ elaborate strategies to adapt to environmental challenges. One means to prepare for unpredictable changes is for clonal populations to contain individuals with diverse physiological states. These subpopulations will differentially respond to new environmental conditions, ensuring that some cells will better adapt. However, for social bacteria physiological heterogeneity may impede the ability of a clonal population to synchronize their behaviors. By using a highly cooperative and synchronizable model organism,M. xanthus, we asked how physiological differences between interacting siblings impacted their collective behaviors. Physiological heterogeneity was experimentally designed such that one population starved while the other grew when mixed. We found that these differences led to social conflict where more-fit individuals killed their less-fit siblings. For the first time, we report that the T6SS nanoweapon mediates antagonism between siblings, resulting in myxobacterial populations becoming more synchronized to conduct social behaviors.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jessica Agnetti ◽  
Helena M. B. Seth-Smith ◽  
Sebastian Ursich ◽  
Josiane Reist ◽  
Marek Basler ◽  
...  

2016 ◽  
Vol 12 (6) ◽  
pp. e1005735 ◽  
Author(s):  
Francesca R. Cianfanelli ◽  
Juliana Alcoforado Diniz ◽  
Manman Guo ◽  
Virginia De Cesare ◽  
Matthias Trost ◽  
...  

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Young-Jun Park ◽  
Kaitlyn D. Lacourse ◽  
Christian Cambillau ◽  
Frank DiMaio ◽  
Joseph D. Mougous ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Lizhi Ma ◽  
Yiquan Zhang ◽  
Xiaojuan Yan ◽  
Liping Guo ◽  
Li Wang ◽  
...  

The type VI secretion system (T6SS) is bacterial protein injection machinery with roles in virulence, symbiosis, interbacterial interaction, antipathogenesis, and environmental stress responses. There are two T6SS loci, T6SS1 and T6SS2, in the two chromosomes ofVibrio parahaemolyticus, respectively. This work disclosed that the master quorum sensing (QS) regulator OpaR repressed the transcription ofhcp1encoding the structural component Hcp1 of T6SS1 inV. parahaemolyticus, indicating that QS had a negative regulatory action on T6SS1. A singleσ54-dependent promoter was transcribed forhcp1inV. parahaemolyticus, and its activity was repressed by the OpaR regulator. Since the OpaR protein could not bind to the upstream region ofhcp1, OpaR would repress the transcription ofhcp1in an indirect manner.


2018 ◽  
Vol 115 (36) ◽  
pp. E8528-E8537 ◽  
Author(s):  
Lauren Speare ◽  
Andrew G. Cecere ◽  
Kirsten R. Guckes ◽  
Stephanie Smith ◽  
Michael S. Wollenberg ◽  
...  

Intraspecific competition describes the negative interaction that occurs when different populations of the same species attempt to fill the same niche. Such competition is predicted to occur among host-associated bacteria but has been challenging to study in natural biological systems. Although many bioluminescentVibrio fischeristrains exist in seawater, only a few strains are found in the light-organ crypts of an individual wild-caughtEuprymna scolopessquid, suggesting a possible role for intraspecific competition during early colonization. Using a culture-based assay to investigate the interactions of differentV. fischeristrains, we found “lethal” and “nonlethal” isolates that could kill or not kill the well-studied light-organ isolate ES114, respectively. The killing phenotype of these lethal strains required a type VI secretion system (T6SS) encoded in a 50-kb genomic island. Multiple lethal and nonlethal strains could be cultured from the light organs of individual wild-caught adult squid. Although lethal strains eliminate nonlethal strains in vitro, two lethal strains could coexist in interspersed microcolonies that formed in a T6SS-dependent manner. This coexistence was destabilized upon physical mixing, resulting in one lethal strain consistently eliminating the other. When juvenile squid were coinoculated with lethal and nonlethal strains, they occupied different crypts, yet they were observed to coexist within crypts when T6SS function was disrupted. These findings, using a combination of natural isolates and experimental approaches in vitro and in the animal host, reveal the importance of T6SS in spatially separating strains during the establishment of host colonization in a natural symbiosis.


Sign in / Sign up

Export Citation Format

Share Document