scholarly journals The Aminoalkylindole BML-190 Negatively Regulates Chitosan Synthesis via the Cyclic AMP/Protein Kinase A1 Pathway in Cryptococcus neoformans

mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Brian T. Maybruck ◽  
Woei C. Lam ◽  
Charles A. Specht ◽  
Ma. Xenia G. Ilagan ◽  
Maureen J. Donlin ◽  
...  

ABSTRACT Cryptococcus neoformans can cause fatal meningoencephalitis in patients with AIDS or other immunocompromising conditions. Current antifungals are suboptimal to treat this disease; therefore, novel targets and new therapies are needed. Previously, we have shown that chitosan is a critical component of the cryptococcal cell wall and is required for survival in the mammalian host and that chitosan deficiency results in rapid clearance from the mammalian host. We had also identified several specific proteins that were required for chitosan biosynthesis, and we hypothesize that screening for compounds that inhibit chitosan biosynthesis would identify additional genes/proteins that influence chitosan biosynthesis. To identify these compounds, we developed a robust and novel cell-based flow cytometry screening method to identify small-molecule inhibitors of chitosan production. We screened the ICCB Known Bioactives library and identified 8 compounds that reduced chitosan in C. neoformans. We used flow cytometry-based counterscreens and confirmatory screens, followed by a biochemical secondary screen to refine our primary screening hits to 2 confirmed hits. One of the confirmed hits that reduced chitosan content was the aminoalkylindole BML-190, a known inverse agonist of mammalian cannabinoid receptors. We demonstrated that BML-190 likely targets the C. neoformans G-protein-coupled receptor Gpr4 and, via the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway, contributes to an intracellular accumulation of cAMP that results in decreased chitosan. Our discovery suggests that this approach could be used to identify additional compounds and pathways that reduce chitosan biosynthesis and could lead to potential novel therapeutics against C. neoformans. IMPORTANCE Cryptococcus neoformans is a fungal pathogen that kills ∼200,000 people every year. The cell wall is an essential organelle that protects fungi from the environment. Chitosan, the deacetylated form of chitin, has been shown to be an essential component of the cryptococcal cell wall during infection of a mammalian host. In this study, we screened a set of 480 compounds, which are known to have defined biological activities, for activity that reduced chitosan production in C. neoformans. Two of these compounds were confirmed using an alternative method of measuring chitosan, and one of these was demonstrated to impact the cAMP signal transduction pathway. This work demonstrates that the cAMP pathway regulates chitosan biosynthesis in C. neoformans and validates that this screening approach could be used to find potential antifungal agents.

2019 ◽  
Author(s):  
Brian T. Maybruck ◽  
Woei C. Lam ◽  
Charles A. Specht ◽  
Ma Xenia G. Ilagan ◽  
Maureen J. Donlin ◽  
...  

AbstractCryptococcus neoformans can cause fatal meningoencephalitis in patients with AIDS or other immune-compromising conditions. Current antifungals are suboptimal to treat this disease, therefore, novel targets and new therapies are needed. Previously, we have shown that chitosan is a critical component of the cryptococcal cell wall, is required for survival in the mammalian host, and that chitosan deficiency results in rapid clearance from the mammalian host. We had also identified several specific proteins that were required for chitosan biosynthesis, and we hypothesize that screening for compounds that inhibit chitosan biosynthesis would identify additional genes/proteins that influence chitosan biosynthesis.To identify these compounds we developed a robust and novel cell-based flow cytometry screening method to identify small molecule inhibitors of chitosan production. We screened the ICCB Known Bioactives library and identified 8 compounds that reduced chitosan in C. neoformans. We used flow cytometry-based counter and confirmatory screens, followed by a biochemical secondary screen to refine our primary screening hits to 2 confirmed hits.One of the confirmed hits that reduced chitosan content was the aminoalkylindole, BML-190, a known inverse agonist of mammalian cannabinoid receptors. We demonstrated that BML-190 likely targets the C. neoformans G-protein coupled receptor, Gpr4, and via the cAMP/PKA signaling pathway, contributes to an intracellular accumulation of cAMP that results in decreased chitosan. Our discovery suggests that this approach could be used to identify additional compounds and pathways that reduce chitosan biosynthesis, and could lead to potential novel therapeutics against C. neoformans.ImportanceCryptococcus neoformans is a fungal pathogen that kills ∼200,000 people every year. The cell wall is an essential organelle that protects fungus from the environment. Chitosan, the deacetylated form of chitin, has been shown to be an essential component of cryptococcal cells wall during infection of a mammalian host. In this study, we screened a set of 480 compounds, which are known to have defined biological activities, for activity that reduced chitosan production in C. neoformans. Two of these compounds were validated using an alternative method of measuring chitosan, and one of these was demonstrated to impact the cAMP signal transduction pathway. This work demonstrates that the cAMP pathway regulates chitosan in C. neoformans, and validates that this screening approach could be used to find potential antifungal agents.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Maureen J. Donlin ◽  
Rajendra Upadhya ◽  
Kimberly J. Gerik ◽  
Woei Lam ◽  
Laura G. VanArendonk ◽  
...  

ABSTRACTCryptococcus neoformans is a fungal pathogen of immunocompromised people that causes fatal meningitis. The fungal cell wall is essential to viability and pathogenesis ofC. neoformans, and biosynthesis and repair of the wall is primarily controlled by the cell wall integrity (CWI) signaling pathway. Previous work has shown that deletion of genes encoding the four major kinases in the CWI signaling pathway, namely,PKC1,BCK1,MKK2, andMPK1results in severe cell wall phenotypes, sensitivity to a variety of cell wall stressors, and for Mpk1, reduced virulence in a mouse model. Here, we examined the global transcriptional responses to gene deletions ofBCK1,MKK2, andMPK1compared to wild-type cells. We found that over 1,000 genes were differentially expressed in one or more of the deletion strains, with 115 genes differentially expressed in all three strains, many of which have been identified as genes regulated by the cyclic AMP (cAMP)/protein kinase A (PKA) pathway. Biochemical measurements of cAMP levels in the kinase deletion strains revealed significantly less cAMP in all of the deletion strains compared to the wild-type strain. The deletion strains also produced significantly smaller capsules than the wild-type KN99 strain did under capsule-inducing conditions, although the levels of capsule they shed were similar to those shed by the wild type. Finally, addition of exogenous cAMP led to reduced sensitivity to cell wall stress and restored surface capsule to levels near those of wild type. Thus, we have direct evidence of cross talk between the CWI and cAMP/PKA pathways that may have important implications for regulation of cell wall and capsule homeostasis.IMPORTANCECryptococcus neoformans is a fungal pathogen of immunocompromised people that causes fatal meningitis. The fungal cell wall is essential to viability and pathogenesis ofC. neoformans, and biosynthesis and repair of the wall are primarily controlled by the cell wall integrity (CWI) signaling pathway. In this study, we demonstrate that deletion of any of three core kinases in the CWI pathway impacts not only the cell wall but also the amount of surface capsule. Deletion of any of the kinases results in significantly reduced cellular cyclic AMP (cAMP) levels, and addition of exogenous cAMP rescues the capsule defect and some cell wall defects, supporting a direct role for the CWI pathway in regulation of capsule in conjunction with the cAMP/protein kinase A pathway.


2011 ◽  
Vol 10 (9) ◽  
pp. 1264-1268 ◽  
Author(s):  
Lorina G. Baker ◽  
Charles A. Specht ◽  
Jennifer K. Lodge

ABSTRACTCryptococcus neoformansis an opportunistic fungal pathogen that causes meningoencephalitis. Its cell wall is composed of glucans, proteins, chitin, and chitosan. Multiple genetic approaches have defined a chitosan-deficient syndrome that includes slow growth and decreased cell integrity. Here we demonstrate chitosan is necessary for virulence and persistence in the mammalian host.


mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Rajendra Upadhya ◽  
Lorina G. Baker ◽  
Woei C. Lam ◽  
Charles A. Specht ◽  
Maureen J. Donlin ◽  
...  

ABSTRACTChitin is an essential component of the cell wall ofCryptococcus neoformansconferring structural rigidity and integrity under diverse environmental conditions. Chitin deacetylase genes encode the enyzmes (chitin deacetylases [Cdas]) that deacetylate chitin, converting it to chitosan. The functional role of chitosan in the fungal cell wall is not well defined, but it is an important virulence determinant ofC. neoformans. Mutant strains deficient in chitosan are completely avirulent in a mouse pulmonary infection model.C. neoformanscarries genes that encode three Cdas (Cda1, Cda2, and Cda3) that appear to be functionally redundant in cells grown under vegetative conditions. Here we report thatC. neoformansCda1 is the principal Cda responsible for fungal pathogenesis. Point mutations were introduced in the active site of Cda1 to generate strains in which the enzyme activity of Cda1 was abolished without perturbing either its stability or localization. When used to infect CBA/J mice, Cda1 mutant strains produced less chitosan and were attenuated for virulence. We further demonstrate thatC. neoformansCda genes are transcribed differently during a murine infection from what has been measuredin vitro.IMPORTANCECryptococcus neoformansis unique among fungal pathogens that cause disease in a mammalian host, as it secretes a polysaccharide capsule that hinders recognition by the host to facilitate its survival and proliferation. Even though it causes serious infections in immunocompromised hosts, reports of infection in hosts that are immunocompetent are on the rise. The cell wall of a fungal pathogen, its synthesis, composition, and pathways of remodelling are attractive therapeutic targets for the development of fungicides. Chitosan, a polysaccharide in the cell wall ofC. neoformansis one such target, as it is critical for pathogenesis and absent in the host. The results we present shed light on the importance of one of the chitin deacetylases that synthesize chitosan during infection and further implicates chitosan as being a critical factor for the pathogenesis ofC. neoformans.


2012 ◽  
Vol 80 (6) ◽  
pp. 1980-1986 ◽  
Author(s):  
Laura J. MacDonald ◽  
Richard C. Kurten ◽  
Daniel E. Voth

ABSTRACTCoxiella burnetiiis the bacterial agent of human Q fever, an acute, flu-like illness that can present as chronic endocarditis in immunocompromised individuals. Following aerosol-mediated transmission,C. burnetiireplicates in alveolar macrophages in a unique phagolysosome-like parasitophorous vacuole (PV) required for survival. The mechanisms ofC. burnetiiintracellular survival are poorly defined and a recent Q fever outbreak in the Netherlands emphasizes the need for better understanding this unique host-pathogen interaction. We recently demonstrated that inhibition of host cyclic AMP-dependent protein kinase (PKA) activity negatively impacts PV formation. In the current study, we confirmed PKA involvement in PV biogenesis and probed the role of PKA signaling duringC. burnetiiinfection of macrophages. Using PKA-specific inhibitors, we found the kinase was needed for biogenesis of prototypical PV andC. burnetiireplication. PKA and downstream targets were differentially phosphorylated throughout infection, suggesting prolonged regulation of the pathway. Importantly, the pathogen actively triggered PKA activation, which was also required for PV formation by virulentC. burnetiiisolates during infection of primary human alveolar macrophages. A subset of PKA-specific substrates were differentially phosphorylated duringC. burnetiiinfection, suggesting the pathogen uses PKA signaling to control distinct host cell responses. Collectively, the current results suggest a versatile role for PKA inC. burnetiiinfection and indicate virulent organisms usurp host kinase cascades for efficient intracellular growth.


1985 ◽  
Vol 227 (2) ◽  
pp. 389-395 ◽  
Author(s):  
D Benalal ◽  
U Bachrach

In cultured NG 108-15 neuroblastoma x glioma cells, opiates decreased cellular cyclic AMP and polyamine levels. This decrease was related to the inhibition of ornithine decarboxylase and cyclic AMP-dependent protein kinase activities during the acute exposure of the cells to the drugs. Growing the cells in the presence of opiates for several days led to drug addiction. In the tolerant-addicted cells, polyamine and cyclic AMP levels were close to normal values as were the activities of ornithine decarboxylase and cyclic AMP-dependent protein kinase. Removal of the opiate from ‘addicted’ cells, by either washing or by adding the antagonist naloxone, resulted in an increase in cyclic AMP and polyamine levels and the activities of ornithine decarboxylase and cyclic AMP-dependent protein kinase. The effect of opiates was closely related to their biological activities. Inactive enantiomorphs did not affect cyclic AMP or polyamine levels; neither did they decrease ornithine decarboxylase and cyclic AMP-dependent protein kinase activities.


2019 ◽  
Vol 85 (24) ◽  
Author(s):  
Christopher A. Naranjo ◽  
Anita D. Jivan ◽  
Maria N. Vo ◽  
Katherine H. de Sa Campos ◽  
Jared S. Deyarmin ◽  
...  

ABSTRACT The methylotrophic yeast Pichia pastoris has been utilized for heterologous protein expression for over 30 years. Because P. pastoris secretes few of its own proteins, the exported recombinant protein is the major polypeptide in the extracellular medium, making purification relatively easy. Unfortunately, some recombinant proteins intended for secretion are retained within the cell. A mutant strain isolated in our laboratory, containing a disruption of the BGS13 gene, displayed elevated levels of secretion for a variety of reporter proteins. The Bgs13 peptide (Bgs13p) is similar to the Saccharomyces cerevisiae protein kinase C 1 protein (Pkc1p), but its specific mode of action is currently unclear. To illuminate differences in the secretion mechanism between the wild-type (wt) strain and the bgs13 strain, we determined that the disrupted bgs13 gene expressed a truncated protein that had reduced protein kinase C activity and a different location in the cell, compared to the wt protein. Because the Pkc1p of baker’s yeast plays a significant role in cell wall integrity, we investigated the sensitivity of the mutant strain’s cell wall to growth antagonists and extraction by dithiothreitol, determining that the bgs13 strain cell wall suffered from inherent structural problems although its porosity was normal. A proteomic investigation of the bgs13 strain secretome and cell wall-extracted peptides demonstrated that, compared to its wt parent, the bgs13 strain also displayed increased release of an array of normally secreted, endogenous proteins, as well as endoplasmic reticulum-resident chaperone proteins, suggesting that Bgs13p helps regulate the unfolded protein response and protein sorting on a global scale. IMPORTANCE The yeast Pichia pastoris is used as a host system for the expression of recombinant proteins. Many of these products, including antibodies, vaccine antigens, and therapeutic proteins such as insulin, are currently on the market or in late stages of development. However, one major weakness is that sometimes these proteins are not secreted from the yeast cell efficiently, which impedes and raises the cost of purification of these vital proteins. Our laboratory has isolated a mutant strain of Pichia pastoris that shows enhanced secretion of many proteins. The mutant produces a modified version of Bgs13p. Our goal is to understand how the change in the Bgs13p function leads to improved secretion. Once the Bgs13p mechanism is illuminated, we should be able to apply this understanding to engineer new P. pastoris strains that efficiently produce and secrete life-saving recombinant proteins, providing medical and economic benefits.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Damian J. Krysan ◽  
Bing Zhai ◽  
Sarah R. Beattie ◽  
Kara M. Misel ◽  
Melanie Wellington ◽  
...  

ABSTRACT The ability of Cryptococcus neoformans to cause disease in humans varies significantly among strains with highly related genotypes. In general, environmental isolates of pathogenic species such as Cryptococcus neoformans var. grubii have reduced virulence relative to clinical isolates, despite having no differences in the expression of the canonical virulence traits (high-temperature growth, melanization, and capsule formation). In this observation, we report that environmental isolates of C. neoformans tolerate host CO2 concentrations poorly compared to clinical isolates and that CO2 tolerance correlates well with the ability of the isolates to cause disease in mammals. Initial experiments also suggest that CO2 tolerance is particularly important for dissemination of C. neoformans from the lung to the brain. Furthermore, CO2 concentrations affect the susceptibility of both clinical and environmental C. neoformans isolates to the azole class of antifungal drugs, suggesting that antifungal testing in the presence of CO2 may improve the correlation between in vitro azole activity and patient outcome. IMPORTANCE A number of studies comparing either patient outcomes or model system virulence across large collections of Cryptococcus isolates have found significant heterogeneity in virulence even among strains with highly related genotypes. Because this heterogeneity cannot be explained by variations in the three well-characterized virulence traits (growth at host body temperature, melanization, and polysaccharide capsule formation), it has been widely proposed that additional C. neoformans virulence traits must exist. The natural niche of C. neoformans is in the environment, where the carbon dioxide concentration is very low (∼0.04%); in contrast, mammalian host tissue carbon dioxide concentrations are 125-fold higher (5%). We have found that the ability to grow in the presence of 5% carbon dioxide distinguishes low-virulence strains from high-virulence strains, even those with a similar genotype. Our findings suggest that carbon dioxide tolerance is a previously unrecognized virulence trait for C. neoformans.


2020 ◽  
Vol 88 (5) ◽  
Author(s):  
S. Groeger ◽  
F. Denter ◽  
G. Lochnit ◽  
M. L. Schmitz ◽  
J. Meyle

ABSTRACT Programmed death-ligand 1 (PD-L1/B7-H1) serves as a cosignaling molecule in cell-mediated immune responses and contributes to chronicity of inflammation and the escape of tumor cells from immunosurveillance. Here, we investigated the molecular mechanisms leading to PD-L1 upregulation in human oral carcinoma cells and in primary human gingival keratinocytes in response to infection with Porphyromonas gingivalis (P. gingivalis), a keystone pathogen for the development of periodontitis. The bacterial cell wall component peptidoglycan uses bacterial outer membrane vesicles to be taken up by cells. Internalized peptidoglycan triggers cytosolic receptors to induce PD-L1 expression in a myeloid differentiation primary response 88 (Myd88)-independent and receptor-interacting serine/threonine-protein kinase 2 (RIP2)-dependent fashion. Interference with the kinase activity of RIP2 or mitogen-activated protein (MAP) kinases interferes with inducible PD-L1 expression.


2012 ◽  
Vol 12 (1) ◽  
pp. 12-22 ◽  
Author(s):  
Yeissa Chabrier-Roselló ◽  
Kimberly J. Gerik ◽  
Kristy Koselny ◽  
Louis DiDone ◽  
Jennifer K. Lodge ◽  
...  

ABSTRACTCryptococcus neoformansPKH2-01andPKH2-02are orthologous to mammalian PDK1 kinase genes. Although orthologs of these kinases have been extensively studied inS. cerevisiae, little is known about their function in pathogenic fungi. In this study, we show thatPKH2-02but notPKH2-01is required forC. neoformansto tolerate cell wall, oxidative, nitrosative, and antifungal drug stress. Deletion ofPKH2-02leads to decreased basal levels of Pkc1 activity and, consequently, reduced activation of the cell wall integrity mitogen-activated protein kinase (MAPK) pathway in response to cell wall, oxidative, and nitrosative stress.PKH2-02function also is required for tolerance of fluconazole and amphotericin B, two important drugs for the treatment of cryptococcosis. Furthermore, OSU-03012, an inhibitor of human PDK1, is synergistic and fungicidal in combination with fluconazole. Using aGalleria mellonellamodel of low-temperature cryptococcosis, we found thatPKH2-02is also required for virulence in a temperature-independent manner. Consistent with the hypersensitivity of thepkh2-02Δ mutant to oxidative and nitrosative stress, this mutant shows decreased survival in murine phagocytes compared to that of wild-type (WT) cells. In addition, we show that deletion ofPKH2-02affects the interaction betweenC. neoformansand phagocytes by decreasing its ability to suppress production of tumor necrosis factor alpha (TNF-α) and reactive oxygen species. Taken together, our studies demonstrate that Pkh2-02-mediated signaling inC. neoformansis crucial for stress tolerance, host-pathogen interactions, and both temperature-dependent and -independent virulence.


Sign in / Sign up

Export Citation Format

Share Document