scholarly journals Preclinical Evaluation of Recombinant Microbial Glycoside Hydrolases in the Prevention of Experimental Invasive Aspergillosis

mBio ◽  
2021 ◽  
Author(s):  
Hanna Ostapska ◽  
Deepa Raju ◽  
Melanie Lehoux ◽  
Ira Lacdao ◽  
Stephanie Gilbert ◽  
...  

The biofilm-forming mold Aspergillus fumigatus is a common causative agent of invasive fungal airway disease in patients with a compromised immune system or chronic airway disease. Treatment of A. fumigatus infection is limited by the few available antifungals to which fungal resistance is becoming increasingly common.

2019 ◽  
Vol 63 (10) ◽  
Author(s):  
Nathan P. Wiederhold ◽  
Laura K. Najvar ◽  
Rosie Jaramillo ◽  
Marcos Olivo ◽  
Brian L. Wickes ◽  
...  

ABSTRACT We evaluated extended-interval dosing of the investigational echinocandin rezafungin (1, 4, and 16 mg/kg on days 1, 4, and 7 postinoculation) for the treatment of disseminated invasive aspergillosis caused by azole-resistant Aspergillus fumigatus. Survival was significantly improved in mice treated with each dose of rezafungin and supratherapeutic posaconazole (20 mg/kg twice daily). Kidney fungal burden, as measured by quantitative real-time PCR, was also significantly reduced in mice treated with rezafungin although variability was observed.


2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Seyedmojtaba Seyedmousavi ◽  
Johan W. Mouton ◽  
Willem J. G. Melchers ◽  
Paul E. Verweij

ABSTRACT Using an immunocompetent murine model of invasive aspergillosis (IA), we previously reported that the efficacy of liposomal amphotericin B (L-AmB) (Ambisome) is not hampered by the presence of azole resistance mutations in Aspergillus fumigatus (S. Seyedmousavi, W. J. G. Melchers, J. W. Mouton, and P. E. Verweij, Antimicrob Agents Chemother 57:1866–1871, 2013, https://doi.org/10.1128/AAC.02226-12 ). We here investigated the role of immune suppression, i.e., neutropenia and steroid treatment, in L-AmB efficacy in mice infected with wild-type (WT) A. fumigatus and with azole-resistant A. fumigatus harboring a TR34/L98H mutation in the cyp-51A gene. Survival of treated animals at day 14 in both immunosuppressed models was significantly better than that of nontreated controls. A dose-response relationship was observed that was independent of the azole-resistant mechanism and the immunosuppression method used. In the neutropenic model, 100% survival was reached at an L-AmB dose of 16 mg/kg of body weight for the WT strain and the TR34/L98H isolate. In the steroid-treated group, 90.9% survival and 100% survival were achieved for the WT isolate and the TR34/L98H isolate with an L-AmB dose of 16 mg/kg, respectively. The 50% effective dose (ED50) was 1.40 mg/kg (95% confidence interval [CI], 0.66 to 3.00 mg/kg) for the WT isolate and 1.92 mg/kg (95% CI, 0.60 to 6.17 mg/kg) for the TR34/L98H isolate in the neutropenic model and was 2.40 mg/kg (95% CI, 1.93 to 2.97 mg/kg) for the WT isolate and 2.56 mg/kg (95% CI, 1.43 to 4.56 mg/kg) for the TR34/L98H isolate in the steroid-treated group. Overall, there were no significant differences between the two different immunosuppressed conditions in the efficacy of L-AmB against the wild-type and azole-resistant isolates (P > 0.9). However, the required L-AmB exposure was significantly higher than that seen in the immunocompetent model.


2012 ◽  
Vol 57 (3) ◽  
pp. 1275-1282 ◽  
Author(s):  
Francesca Bugli ◽  
Brunella Posteraro ◽  
Massimiliano Papi ◽  
Riccardo Torelli ◽  
Alessandro Maiorana ◽  
...  

ABSTRACTAspergillus fumigatusbiofilms represent a problematic clinical entity, especially because of their recalcitrance to antifungal drugs, which poses a number of therapeutic implications for invasive aspergillosis, the most difficult-to-treatAspergillus-related disease. While the antibiofilm activities of amphotericin B (AMB) deoxycholate and its lipid formulations (e.g., liposomal AMB [LAMB]) are well documented, the effectiveness of these drugs in combination with nonantifungal agents is poorly understood. In the present study,in vitrointeractions between polyene antifungals (AMB and LAMB) and alginate lyase (AlgL), an enzyme degrading the polysaccharides produced as extracellular polymeric substances (EPSs) within the biofilm matrix, againstA. fumigatusbiofilms were evaluated by using the checkerboard microdilution and the time-kill assays. Furthermore, atomic force microscopy (AFM) was used to image and quantify the effects of AlgL-antifungal combinations on biofilm-growing hyphal cells. On the basis of fractional inhibitory concentration index values, synergy was found between both AMB formulations and AlgL, and this finding was also confirmed by the time-kill test. Finally, AFM analysis showed that whenA. fumigatusbiofilms were treated with AlgL or polyene alone, as well as with their combination, both a reduction of hyphal thicknesses and an increase of adhesive forces were observed compared to the findings for untreated controls, probably owing to the different action by the enzyme or the antifungal compounds. Interestingly, marked physical changes were noticed inA. fumigatusbiofilms exposed to the AlgL-antifungal combinations compared with the physical characteristics detected after exposure to the antifungals alone, indicating that AlgL may enhance the antibiofilm activity of both AMB and LAMB, perhaps by disrupting the hypha-embedding EPSs and thus facilitating the drugs to reach biofilm cells. Taken together, our results suggest that a combination of AlgL and a polyene antifungal may prove to be a new therapeutic strategy for invasive aspergillosis, while reinforcing the EPS as a valuable antibiofilm drug target.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Clara Valero ◽  
Ana Cristina Colabardini ◽  
Jéssica Chiaratto ◽  
Lakhansing Pardeshi ◽  
Patrícia Alves de Castro ◽  
...  

ABSTRACT Aspergillus fumigatus is the leading cause of pulmonary fungal diseases. Azoles have been used for many years as the main antifungal agents to treat and prevent invasive aspergillosis. However, in the last 10 years there have been several reports of azole resistance in A. fumigatus and new strategies are needed to combat invasive aspergillosis. Caspofungin is effective against other human-pathogenic fungal species, but it is fungistatic only against A. fumigatus. Resistance to caspofungin in A. fumigatus has been linked to mutations in the fksA gene that encodes the target enzyme of the drug β-1,3-glucan synthase. However, tolerance of high caspofungin concentrations, a phenomenon known as the caspofungin paradoxical effect (CPE), is also important for subsequent adaptation and drug resistance evolution. Here, we identified and characterized the transcription factors involved in the response to CPE by screening an A. fumigatus library of 484 null transcription factors (TFs) in CPE drug concentrations. We identified 11 TFs that had reduced CPE and that encoded proteins involved in the basal modulation of the RNA polymerase II initiation sites, calcium metabolism, and cell wall remodeling. One of these TFs, FhdA, was important for mitochondrial respiratory function and iron metabolism. The ΔfhdA mutant showed decreased growth when exposed to Congo red or to high temperature. Transcriptome sequencing (RNA-seq) analysis and further experimental validation indicated that the ΔfhdA mutant showed diminished respiratory capacity, probably affecting several pathways related to the caspofungin tolerance and resistance. Our results provide the foundation to understand signaling pathways that are important for caspofungin tolerance and resistance. IMPORTANCE Aspergillus fumigatus, one of the most important human-pathogenic fungal species, is able to cause aspergillosis, a heterogeneous group of diseases that presents a wide range of clinical manifestations. Invasive pulmonary aspergillosis is the most serious pathology in terms of patient outcome and treatment, with a high mortality rate ranging from 50% to 95% primarily affecting immunocompromised patients. Azoles have been used for many years as the main antifungal agents to treat and prevent invasive aspergillosis. However, there were several reports of evolution of clinical azole resistance in the last decade. Caspofungin, a noncompetitive β-1,3-glucan synthase inhibitor, has been used against A. fumigatus, but it is fungistatic and is recommended as second-line therapy for invasive aspergillosis. More information about caspofungin tolerance and resistance is necessary in order to refine antifungal strategies that target the fungal cell wall. Here, we screened a transcription factor (TF) deletion library for TFs that can mediate caspofungin tolerance and resistance. We have identified 11 TFs that are important for caspofungin sensitivity and/or for the caspofungin paradoxical effect (CPE). These TFs encode proteins involved in the basal modulation of the RNA polymerase II initiation sites, calcium metabolism or cell wall remodeling, and mitochondrial respiratory function. The study of those genes regulated by TFs identified in this work will provide a better understanding of the signaling pathways that are important for caspofungin tolerance and resistance.


2020 ◽  
Vol 59 (1) ◽  
pp. 93-101
Author(s):  
Jörg Janne Vehreschild ◽  
Philipp Koehler ◽  
Frédéric Lamoth ◽  
Juergen Prattes ◽  
Christina Rieger ◽  
...  

Abstract Diagnosis, treatment, and management of invasive mould infections (IMI) are challenged by several risk factors, including local epidemiological characteristics, the emergence of fungal resistance and the innate resistance of emerging pathogens, the use of new immunosuppressants, as well as off-target effects of new oncological drugs. The presence of specific host genetic variants and the patient's immune system status may also influence the establishment of an IMI and the outcome of its therapy. Immunological components can thus be expected to play a pivotal role not only in the risk assessment and diagnosis, but also in the treatment of IMI. Cytokines could improve the reliability of an invasive aspergillosis diagnosis by serving as biomarkers as do serological and molecular assays, since they can be easily measured, and the turnaround time is short. The use of immunological markers in the assessment of treatment response could be helpful to reduce overtreatment in high risk patients and allow prompt escalation of antifungal treatment. Mould-active prophylaxis could be better targeted to individual host needs, leading to a targeted prophylaxis in patients with known immunological profiles associated with high susceptibility for IMI, in particular invasive aspergillosis. The alteration of cellular antifungal immune response through oncological drugs and immunosuppressants heavily influences the outcome and may be even more important than the choice of the antifungal treatment. There is a need for the development of new antifungal strategies, including individualized approaches for prevention and treatment of IMI that consider genetic traits of the patients. Lay Abstract Anticancer and immunosuppressive drugs may alter the ability of the immune system to fight invasive mould infections and may be more important than the choice of the antifungal treatment. Individualized approaches for prevention and treatment of invasive mold infections are needed.


2013 ◽  
Vol 57 (6) ◽  
pp. 2815-2820 ◽  
Author(s):  
Pilar Escribano ◽  
Teresa Peláez ◽  
Patricia Muñoz ◽  
Emilio Bouza ◽  
Jesús Guinea

ABSTRACTAspergillus fumigatuscomplex comprisesA. fumigatusand other morphologically indistinguishable cryptic species. We retrospectively studied 362A. fumigatuscomplex isolates (353 samples) from 150 patients with proven or probable invasive aspergillosis or aspergilloma (2, 121, and 6 samples, respectively) admitted to the hospital from 1999 to 2011. Isolates were identified using the β-tubulin gene, and only 1 isolate per species found in each sample was selected. Antifungal susceptibility to azoles was determined using the CLSI M38-A2 procedure. Isolates were considered resistant if they showed an MIC above the breakpoints for itraconazole, voriconazole, or posaconazole (>2, >2, or >0.5 μg/ml). Most of the samples yielded only 1 species (A. fumigatus[n= 335],A. novofumigatus[n= 4],A. lentulus[n= 3],A. viridinutans[n= 1], andNeosartorya udagawae[n= 1]). The remaining samples yielded a combination of 2 species. Most of the patients were infected by a single species (A. fumigatus[n= 143] orA. lentulus[n= 2]). The remaining 5 patients were coinfected with multipleA. fumigatuscomplex species, althoughA. fumigatuswas always involved; 4 of the 5 patients were diagnosed in 2009 or later. Cryptic species were less susceptible thanA. fumigatus. The frequency of resistance amongA. fumigatuscomplex andA. fumigatusto itraconazole, voriconazole, and posaconazole was 2.5 and 0.3%, 3.1 and 0.3%, and 4.2 and 1.8%, respectively, in the per-isolate analysis and 1.3 and 0.7%, 2.6 and 0.7%, and 6 and 4% in the per-patient analysis. Only 1 of the 6A. fumigatusisolates in which thecyp51Agene was sequenced had a mutation at position G448. The proportion of patients infected by azole-resistantA. fumigatusisolates was low.


2017 ◽  
Vol 61 (8) ◽  
Author(s):  
Susann Rößler ◽  
Oliver Bader ◽  
Friedrich Stölzel ◽  
Ulrich Sommer ◽  
Birgit Spiess ◽  
...  

ABSTRACT Patients with hematologic malignancies as well as allogeneic hematopoietic stem cell transplantation (HSCT) patients are at high risk for invasive aspergillosis. Here, we report a culture- and autopsy-proven fatal invasive aspergillosis in an allogeneic HSTC patient which he developed despite posaconazole prophylaxis. The agent was determined to be an azole-resistant Aspergillus fumigatus strain bearing the cyp51A mutation combination TR46 Y121F M172I T289A. At increasing frequency, the azole resistance of A. fumigatus is being reported globally, limiting treatment options and complicating regimens.


2011 ◽  
Vol 55 (7) ◽  
pp. 3564-3566 ◽  
Author(s):  
Saskia Kuipers ◽  
Roger J. M. Brüggemann ◽  
Ruud G. L. de Sévaux ◽  
John P. F. A. Heesakkers ◽  
Willem J. G. Melchers ◽  
...  

ABSTRACTWe report the case of a kidney transplant recipient with invasive aspergillosis due toAspergillus fumigatusresistant to voriconazole and intermediately susceptible to posaconazole who failed posaconazole therapy. Plasma posaconazole concentrations indicated an unfavorable ratio of the area under the concentration-time curve over the MIC. Posaconazole should be used with caution for invasive aspergillosis caused by strains with attenuated posaconazole susceptibility, as drug exposure may be inadequate, resulting in therapeutic failure.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Clara E. Negri ◽  
Sarah S. Gonçalves ◽  
Ana Cristina P. Sousa ◽  
Maria Daniela Bergamasco ◽  
Marinês D. V. Martino ◽  
...  

ABSTRACT Aspergillus fumigatus azole resistance has emerged as a global health problem. We evaluated the in vitro antifungal susceptibility of 221 clinical A. fumigatus isolates according to CLSI guidelines. Sixty-one isolates exhibiting MICs at the epidemiological cutoff value (ECV) for itraconazole or above the ECV for any triazole were checked for CYP51A mutations. No mutations were documented, even for the isolates (1.8%) with high voriconazole MICs, indicating that triazoles may be used safely to treat aspergillosis in Brazil.


mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Jorge Amich

ABSTRACT Jorge Amich studies several aspects of sulfur and nitrogen metabolism in Aspergillus fumigatus, with the ultimate aim of identifying targets for the development of novel antifungals. In this mSphere of Influence article, he reflects on how “Sub-Telomere Directed Gene Expression during Initiation of Invasive Aspergillosis” (A. McDonagh, N. D. Fedorova, J. Crabtree, Y. Yu, S. Kim, et al., PLoS Pathog 4:e1000154, 2008, https://doi.org/10.1371/journal.ppat.1000154) impacted his thinking about in vivo metabolism and how to investigate it.


Sign in / Sign up

Export Citation Format

Share Document