scholarly journals miR-31 Functions as a Negative Regulator of Lymphatic Vascular Lineage-Specific Differentiation In Vitro and Vascular Development In Vivo

2010 ◽  
Vol 30 (14) ◽  
pp. 3620-3634 ◽  
Author(s):  
Deena M. Leslie Pedrioli ◽  
Terhi Karpanen ◽  
Vasilios Dabouras ◽  
Giorgia Jurisic ◽  
Glenn van de Hoek ◽  
...  

ABSTRACT The lymphatic vascular system maintains tissue fluid homeostasis, helps mediate afferent immune responses, and promotes cancer metastasis. To address the role microRNAs (miRNAs) play in the development and function of the lymphatic vascular system, we defined the in vitro miRNA expression profiles of primary human lymphatic endothelial cells (LECs) and blood vascular endothelial cells (BVECs) and identified four BVEC signature and two LEC signature miRNAs. Their vascular lineage-specific expression patterns were confirmed in vivo by quantitative real-time PCR and in situ hybridization. Functional characterization of the BVEC signature miRNA miR-31 identified a novel BVEC-specific posttranscriptional regulatory mechanism that inhibits the expression of lymphatic lineage-specific transcripts in vitro. We demonstrate that suppression of lymphatic differentiation is partially mediated via direct repression of PROX1, a transcription factor that functions as a master regulator of lymphatic lineage-specific differentiation. Finally, in vivo studies of Xenopus and zebrafish demonstrated that gain of miR-31 function impaired venous sprouting and lymphatic vascular development, thus highlighting the importance of miR-31 as a negative regulator of lymphatic development. Collectively, our findings identify miR-31 is a potent regulator of vascular lineage-specific differentiation and development in vertebrates.

Blood ◽  
2003 ◽  
Vol 101 (5) ◽  
pp. 1801-1809 ◽  
Author(s):  
Yoshihiro Yamada ◽  
Yuichi Oike ◽  
Hisao Ogawa ◽  
Yasuhiro Ito ◽  
Hajime Fujisawa ◽  
...  

Neuropilin-1 (NP-1) is a receptor for vascular endothelial growth factor-165 (VEGF165) and acts as a coreceptor that enhances the function of VEGF165 through VEGF receptor-2 (VEGFR-2). Studies using transgenic and knock-out mice of NP-1 indicated that this molecule is important for vascular development as well as neuronal development. We recently reported that clustered soluble NP-1 phosphorylates VEGFR-2 on endothelial cells with a low dose of VEGF165 and rescues the defective vascularity of the NP-1−/− embryo in vitro and in vivo. Here we show that NP-1 is expressed by CD45+ hematopoietic cells in the fetal liver, can bind VEGF165, and phosphorylates VEGFR-2 on endothelial cells. CD45+NP-1+ cells rescued the defective vasculogenesis and angiogenesis in the NP-1−/− P-Sp (para-aortic splanchnopleural mesodermal region) culture, although CD45+NP-1− cells did not. Moreover, CD45+NP-1+ cells together with VEGF165 induced angiogenesis in an in vivo Matrigel assay and cornea neovascularization assay. The extracellular domain of NP-1 consists of “a,” “b,” and “c” domains, and it is known that the “a” and “c” domains are necessary for dimerization of NP-1. We found that both the “a” and “c” domains are essential for such rescue of defective vascularities in the NP-1 mutant. These results suggest that NP-1 enhances vasculogenesis and angiogenesis exogenously and that dimerization of NP-1 is important for enhancing vascular development. In NP-1−/− embryos, vascular sprouting is impaired at the central nervous system (CNS) and pericardium where VEGF is not abundant, indicating that NP-1–expressing cells are required for normal vascular development.


Blood ◽  
2004 ◽  
Vol 103 (9) ◽  
pp. 3465-3473 ◽  
Author(s):  
Shane C. McAllister ◽  
Scott G. Hansen ◽  
Rebecca A. Ruhl ◽  
Camilo M. Raggo ◽  
Victor R. DeFilippis ◽  
...  

Abstract Kaposi sarcoma (KS) is the most common AIDS-associated malignancy and is characterized by angiogenesis and the presence of spindle cells. Kaposi sarcoma-associated herpesvirus (KSHV) is consistently associated with all clinical forms of KS, and in vitro infection of dermal microvascular endothelial cells (DMVECs) with KSHV recapitulates many of the features of KS, including transformation, spindle cell proliferation, and angiogenesis. To study the molecular mechanisms of KSHV pathogenesis, we compared the protein expression profiles of KSHV-infected and uninfected DMVECs. This comparison revealed that heme oxygenase-1 (HO-1), the inducible enzyme responsible for the rate-limiting step in heme catabolism, was up-regulated in infected endothelial cells. Recent evidence suggests that the products of heme catabolism have important roles in endothelial cell biology, including apoptosis and angiogenesis. Here we show that HO-1 mRNA and protein are up-regulated in KSHV-infected cultures. Comparison of oral and cutaneous AIDS-KS tissues with normal tissues revealed that HO-1 mRNA and protein were also up-regulated in vivo. Increased HO-1 enzymatic activity in vitro enhanced proliferation of KSHV-infected DMVECs in the presence of free heme. Treatment with the HO-1 inhibitor chromium mesoporphyrin IX abolished heme-induced proliferation. These data suggest that HO-1 is a potential therapeutic target for KS that warrants further study. (Blood. 2004;103: 3465-3473)


2020 ◽  
Vol 126 (4) ◽  
pp. 471-485 ◽  
Author(s):  
Zhao Li ◽  
Mingzhu Yin ◽  
Haifeng Zhang ◽  
Weiming Ni ◽  
Richard W. Pierce ◽  
...  

Rationale: BMX (bone marrow kinase on the X chromosome) is highly expressed in the arterial endothelium from the embryonic stage to the adult stage in mice. It is also expressed in microvessels and the lymphatics in response to pathological stimuli. However, its role in endothelial permeability and sepsis remains unknown. Objective: We aimed to delineate the function of BMX in thrombin-mediated endothelial permeability and the vascular leakage that occurs with sepsis in cecal ligation and puncture models. Methods and Results: The cecal ligation and puncture model was applied to WT (wild type) and BMX-KO (BMX global knockout) mice to induce sepsis. Meanwhile, the electric cell-substrate impedance sensing assay was used to detect transendothelial electrical resistance in vitro and, the modified Miles assay was used to evaluate vascular leakage in vivo. We showed that BMX loss caused lung injury and inflammation in early cecal ligation and puncture–induced sepsis. Disruption of BMX increased thrombin-mediated permeability in mice and cultured endothelial cells by 2- to 3-fold. The expression of BMX in macrophages, neutrophils, platelets, and lung epithelial cells was undetectable compared with that in endothelial cells, indicating that endothelium dysfunction, rather than leukocyte and platelet dysfunction, was involved in vascular permeability and sepsis. Mechanistically, biochemical and cellular analyses demonstrated that BMX specifically repressed thrombin-PAR1 (protease-activated receptor-1) signaling in endothelial cells by directly phosphorylating PAR1 and promoting its internalization and deactivation. Importantly, pretreatment with the selective PAR1 antagonist SCH79797 rescued BMX loss-mediated endothelial permeability and pulmonary leakage in early cecal ligation and puncture–induced sepsis. Conclusions: Acting as a negative regulator of PAR1, BMX promotes PAR1 internalization and signal inactivation through PAR1 phosphorylation. Moreover, BMX-mediated PAR1 internalization attenuates endothelial permeability to protect vascular leakage during early sepsis.


Blood ◽  
2001 ◽  
Vol 97 (6) ◽  
pp. 1671-1678 ◽  
Author(s):  
Yoshihiro Yamada ◽  
Nobuyuki Takakura ◽  
Hirofumi Yasue ◽  
Hisao Ogawa ◽  
Hajime Fujisawa ◽  
...  

Neuropilin 1 (NP-1) is a receptor for vascular endothelial growth factor (VEGF) 165 (VEGF165) and acts as a coreceptor that enhances VEGF165 function through tyrosine kinase VEGF receptor 2 (VEGFR-2). Transgenic overexpression of np-1results in an excess of capillaries and blood vessels and a malformed heart. Thus, NP-1 may have a key role in vascular development. However, how NP-1 regulates vascular development is not well understood. This study demonstrates how NP-1 can regulate vasculogenesis and angiogenesis in vitro and in vivo. In homozygous np-1mutant (np-1−/−) murine embryos, vascular sprouting was impaired in the central nervous system and pericardium. Para-aortic splanchnopleural mesoderm (P-Sp) explants fromnp-1−/− mice also had vascular defects in vitro. A monomer of soluble NP-1 (NP-1 tagged with Flag epitope) inhibited vascular development in cultured wild-type P-Sp explants by sequestering VEGF165. In contrast, a dimer of soluble NP-1 (NP-1 fused with the Fc part of human IgG) enhanced vascular development in cultured wild-type P-Sp explants. Moreover, the NP-1–Fc rescued the defective vascular development in culturednp-1−/− P-Sp explants. A low dose of VEGF alone did not promote phosphorylation of VEGFR-2 on endothelial cells from np-1−/− embryos, but simultaneous addition of a low dose of VEGF and NP-1–Fc phosphorylated VEGFR-2 significantly. Moreover, NP-1–Fc rescued the defective vascularity of np-1−/− embryos in vivo. These results suggest that a dimer form of soluble NP-1 delivers VEGF165 to VEGFR-2–positive endothelial cells and promotes angiogenesis.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 46-46
Author(s):  
Loic Ysebaert ◽  
Mary Poupot ◽  
Yovan Sanchez-Ruiz ◽  
Camille Laurent ◽  
Guy Laurent ◽  
...  

Abstract Abstract 46 Introduction: CLL cells interact with many accessory cells in an environment mimicking that of normal mature B cells. Role of antigen, cytokines, adhesion pathways are critical for many aspects in the disease course (proliferation/survival, migration or homing, drug resistance, and presumably relapse). Nurse-like cells (NLC) belong to a monocytic-derived, bystander population among CLL lymph node and spleen stromal cells. Aim: To investigate the nature, functions, and location of NLC within CLL microenvironment. Methods: Gene expression profiles (GEP) from in vitro expanded NLC from patients (n=10) were produced and compared to those from normal CD14+ monocytes, M1-polarized macrophages, M2-polarized macrophages and tumor-associated macrophages (produced in the lab or downloaded from GEO datasets). Principal Component Analysis was used to categorize these five populations of cells and in-house-built GSEA software was used for functional interpretation of their relevant gene lists. Protein expression patterns were validated with multi-analyte ELISArray kits, proteome profiler arrays, flow cytometry (FC) or immunohistochemistry (IHC). Results: New insights into the physiopathological role of NLC in CLL are suggested from five lines of evidence: 1/a Òmonocytic gene signatureÓ (i.e. a set of 549 genes) is shared by the NLC and the monocyte subtypes. The genes over-represented in NLC vs normal monocytes pinpointed positive modulation of apoptotic cell clearance (scavenger, mannose and complement receptors, LXRalpha), lipid metabolism (Apolipoprotein E, PPAR signaling), extracellular matrix-receptor interactions (integrins, SPARC, Matrix MetalloProteinases) and actin cytoskeleton remodeling. 2/unsupervised clustering show that NLC represent an M2-skewed, TAM-like cell population. They down-regulate mRNA and proteins for classic M1 inflammatory markers (e.g. IL-1, IL-6, IL-12, COX2) while increase secretion of TGFbeta, IL-10, CCL17 and CCL22 soluble factors. 3/these and previously published observations suggest that B-CLL-to-NLC interactions may orchestrate immunosuppression in this disease. PBMCs from Òwatch and waitÓ CLL patients (all stage A/Rai 0, mutated IgVH, low risk cytogenetics profile) or healthy donors were stimulated with anti-CD3/CD28 beads + IL-2, either in standard RPMI+10% FCS or in conditioned medium (CM, after 14d CLL-NLC co-culture in vitro) and their proliferation/phenotype were compared after 2 weeks. Significant expansion of T cells with Treg (CD4+CD25+FoxP3+) phenotype was observed only from CLL PBMCs grown in conditioned medium (mean % Treg: 2.85 vs 3.05 in CM for normal PBMCs, and 1.54 vs 15.9 in CM for CLL PBMCs, P< 0.05). 4/although NLC make immune synapses with live B-CLL, they do not phagocytose them. Over-expression of CD47 (ÒdonÕt eat meÓ signal) by B-CLL cells (mfi= 3490 vs 2581 on normal cells, P< 0.05, n=18) may provide them with a protective signal against NLC. 5/from our GEP, flow cytometric and IHC analyses, we propose CD163 (classic M2 marker) as a reliable tool to identify NLC in vivo. Although in vitro, CLL cells can pervert healthy donor monocytes into NLC, only CLL-derived NLC are truly CD14+ CD163+. In vivo, CD163 staining reveals putative NLC in CLL lymph nodes(LN)/spleen sections but not in bone marrow. In LN from all patients, NLC reside in the subcapsular areas and line vessel structures, suggesting a role in CLL cells trafficking. Most interestingly, NLC infiltrate pseudofollicles structures only in a subset of cases. We will present updated IHC and clinical presentation correlation studies. Conclusions: Our results suggest that the role of NLC in CLL might be broader than initially thought. Beside of nursing and conferring drug resistance, NLC may also be crucial in the setting of immunosuppression, of CLL cells recruitment, and should thus be considered as therapeutic targets. Disclosures: Off Label Use: GA101 is not currently approved for CLL treatment.


2005 ◽  
Vol 25 (14) ◽  
pp. 5789-5800 ◽  
Author(s):  
Chang-Tze Ricky Yu ◽  
Jung-Mao Hsu ◽  
Yuan-Chii Gladys Lee ◽  
Ann-Ping Tsou ◽  
Chen-Kung Chou ◽  
...  

ABSTRACT Aurora-A, a mitotic serine/threonine kinase with oncogene characteristics, has recently drawn intense attention because of its association with the development of human cancers and its relationship with mitotic progression. Using the gene expression profiles of Aurora-A as a template to search for and compare transcriptome expression profiles in publicly accessible microarray data sets, we identified HURP (encodes hepatoma upregulated protein) as one of the best Aurora-A-correlated genes. Empirical validation indicates that HURP has several characteristics in common with Aurora-A. These two genes have similar expression patterns in hepatocellular carcinoma, liver regeneration after partial hepatectomy, and cell cycle progression and across a variety of tissues and cell lines. Moreover, Aurora-A phosphorylated HURP in vitro and in vivo. Ectopic expression of either the catalytically inactive form of Aurora-A or the HURP-4P mutant, in which the Aurora-A phosphorylation sites were replaced with Ala, resulted in HURP instability and complex disassembly. In addition, HURP-wild-type stable transfectants were capable of growing in low-serum environments whereas HURP-4P grew poorly under low-serum conditions and failed to proliferate. These studies together support the view that the ability to integrate evidence derived from microarray studies into biochemical analyses may ultimately augment our predictive power when analyzing the potential role of poorly characterized proteins. While this combined approach was simply an initial attempt to answer a range of complex biological questions, our findings do suggest that HURP is a potential oncogenic target of Aurora-A.


Reproduction ◽  
2006 ◽  
Vol 131 (5) ◽  
pp. 895-904 ◽  
Author(s):  
Hakan Sagirkaya ◽  
Muge Misirlioglu ◽  
Abdullah Kaya ◽  
Neal L First ◽  
John J Parrish ◽  
...  

Expression of embryonic genes is altered in different culture conditions, which influence developmental potential both during preimplantation and fetal development. The objective of this study was to define the effects of culture conditions on: bovine embryonic development to blastocyst stage, blastocyst cell number, apoptosis and expression patterns of a panel of developmentally important genes. Bovine embryos were culturedin vitroin three culture media containing amino acids, namely potassium simplex optimization medium (KSOMaa), Charles Rosenkrans 1 (CR1aa) and synthetic oviductal fluid (SOFaa). Apoptosis in blastocysts was determined by TUNEL assay and expression profiles of developmentally important genes were assayed by real-time PCR.In vivo-produced bovine blastocysts were used as controls for experiments determining gene expression patterns. While the cleavage rates did not differ, embryos cultured in SOFaa had higher rates of development to blastocyst stage (P< 0.05). Mean cell numbers and percentages of apoptotic cells per blastocyst did not differ among the groups. Expression of the heat shock protein 70 (Hsp70) gene was significantly up-regulated in both CR1aa and KSOMaa when compared with SOFaa (P< 0.001). DNA methyltransferase 3a (Dnmt3a) expression was higher in embryos cultured in CR1aa than in those cultured in SOFaa (P< 0.001). Expression of interferon tau (IF-τ) and insulin-like growth factor II receptor (Igf-2r) genes was significantly up-regulated in KSOMaa when compared with CR1aa (P< 0.001). Gene expression did not differ betweenin vivo-derived blastocysts and theirin vitro-derived counterparts. In conclusion, SOFaa supports higher development to blastocyst stage than KSOMaa and CR1aa, and the culture conditions influence gene expression.


Pathogens ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 268 ◽  
Author(s):  
Amjad ◽  
Yang ◽  
Li ◽  
Fu ◽  
Yang ◽  
...  

Meningitic Escherichia coli can traverse the host’s blood–brain barrier (BBB) and induce severe neuroinflammatory damage to the central nervous system (CNS). During this process, the host needs to reasonably balance the battle between bacteria and brain microvascular endothelial cells (BMECs) to minimize inflammatory damage, but this quenching of neuroinflammatory responses at the BBB is unclear. MicroRNAs (miRNAs) are widely recognized as key negative regulators in many pathophysiological processes, including inflammatory responses. Our previous transcriptome sequencing revealed numbers of differential miRNAs in BMECs upon meningitic E. coli infection; we next sought to explore whether and how these miRNAs worked to modulate neuroinflammatory responses at meningitic E. coli entry of the BBB. Here, we demonstrated in vivo and in vitro that meningitic E. coli infection of BMECs significantly downregulated miR-19b-3p, which led to attenuated production of proinflammatory cytokines and chemokines via increasing the expression of TNFAIP3, a negative regulator of NF-κB signaling. Moreover, in vivo injection of miR-19b-3p mimics during meningitic E. coli challenge further aggravated the inflammatory damage to mice brains. These in vivo and in vitro findings indicate a novel quenching mechanism of the host by attenuating miR-19b-3p/TNFAIP3/NF-κB signaling in BMECs in response to meningitic E. coli, thus preventing CNS from further neuroinflammatory damage.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Xiaojing Zhang ◽  
Yin Peng ◽  
Yuan Yuan ◽  
Yuli Gao ◽  
Fan Hu ◽  
...  

Abstract Gastric cancer (GC) is the most common cancer throughout the world. Despite advances of the treatments, detailed oncogenic mechanisms are largely unknown. In our previous study, we investigated microRNA (miR) expression profiles in human GC using miR microarrays. We found miR-192/215 were upregulated in GC tissues. Then gene microarray was implemented to discover the targets of miR-192/215. We compared the expression profile of BGC823 cells transfected with miR-192/215 inhibitors, and HFE145 cells transfected with miR-192/-215 mimics, respectively. SET8 was identified as a proposed target based on the expression change of more than twofold. SET8 belongs to the SET domain-containing methyltransferase family and specifically catalyzes monomethylation of H4K20me. It is involved in diverse functions in tumorigenesis and metastasis. Therefore, we focused on the contributions of miR-192/215/SET8 axis to the development of GC. In this study, we observe that functionally, SET8 regulated by miR-192/215 is involved in GC-related biological activities. SET8 is also found to trigger oncogene-induced senescence (OIS) in GC in vivo and in vitro, which is dependent on the DDR (DNA damage response) and p53. Our findings reveal that SET8 functions as a negative regulator of metastasis via the OIS-signaling pathway. Taken together, we investigated the functional significance, molecular mechanisms, and clinical impact of miR-192/215/SET8/p53 in GC.


Blood ◽  
2010 ◽  
Vol 115 (4) ◽  
pp. 906-909 ◽  
Author(s):  
Camilla Norrmén ◽  
Wouter Vandevelde ◽  
Annelii Ny ◽  
Pipsa Saharinen ◽  
Massimiliano Gentile ◽  
...  

Abstract The lymphatic vasculature is important for the regulation of tissue fluid homeostasis, immune response, and lipid absorption, and the development of in vitro models should allow for a better understanding of the mechanisms regulating lymphatic vascular growth, repair, and function. Here we report isolation and characterization of lymphatic endothelial cells from human intestine and show that intestinal lymphatic endothelial cells have a related but distinct gene expression profile from human dermal lymphatic endothelial cells. Furthermore, we identify liprin β1, a member of the family of LAR transmembrane tyrosine phosphatase-interacting proteins, as highly expressed in intestinal lymphatic endothelial cells in vitro and lymphatic vasculature in vivo, and show that it plays an important role in the maintenance of lymphatic vessel integrity in Xenopus tadpoles.


Sign in / Sign up

Export Citation Format

Share Document