Neuropilin-1 on hematopoietic cells as a source of vascular development

Blood ◽  
2003 ◽  
Vol 101 (5) ◽  
pp. 1801-1809 ◽  
Author(s):  
Yoshihiro Yamada ◽  
Yuichi Oike ◽  
Hisao Ogawa ◽  
Yasuhiro Ito ◽  
Hajime Fujisawa ◽  
...  

Neuropilin-1 (NP-1) is a receptor for vascular endothelial growth factor-165 (VEGF165) and acts as a coreceptor that enhances the function of VEGF165 through VEGF receptor-2 (VEGFR-2). Studies using transgenic and knock-out mice of NP-1 indicated that this molecule is important for vascular development as well as neuronal development. We recently reported that clustered soluble NP-1 phosphorylates VEGFR-2 on endothelial cells with a low dose of VEGF165 and rescues the defective vascularity of the NP-1−/− embryo in vitro and in vivo. Here we show that NP-1 is expressed by CD45+ hematopoietic cells in the fetal liver, can bind VEGF165, and phosphorylates VEGFR-2 on endothelial cells. CD45+NP-1+ cells rescued the defective vasculogenesis and angiogenesis in the NP-1−/− P-Sp (para-aortic splanchnopleural mesodermal region) culture, although CD45+NP-1− cells did not. Moreover, CD45+NP-1+ cells together with VEGF165 induced angiogenesis in an in vivo Matrigel assay and cornea neovascularization assay. The extracellular domain of NP-1 consists of “a,” “b,” and “c” domains, and it is known that the “a” and “c” domains are necessary for dimerization of NP-1. We found that both the “a” and “c” domains are essential for such rescue of defective vascularities in the NP-1 mutant. These results suggest that NP-1 enhances vasculogenesis and angiogenesis exogenously and that dimerization of NP-1 is important for enhancing vascular development. In NP-1−/− embryos, vascular sprouting is impaired at the central nervous system (CNS) and pericardium where VEGF is not abundant, indicating that NP-1–expressing cells are required for normal vascular development.

Blood ◽  
2001 ◽  
Vol 97 (6) ◽  
pp. 1671-1678 ◽  
Author(s):  
Yoshihiro Yamada ◽  
Nobuyuki Takakura ◽  
Hirofumi Yasue ◽  
Hisao Ogawa ◽  
Hajime Fujisawa ◽  
...  

Neuropilin 1 (NP-1) is a receptor for vascular endothelial growth factor (VEGF) 165 (VEGF165) and acts as a coreceptor that enhances VEGF165 function through tyrosine kinase VEGF receptor 2 (VEGFR-2). Transgenic overexpression of np-1results in an excess of capillaries and blood vessels and a malformed heart. Thus, NP-1 may have a key role in vascular development. However, how NP-1 regulates vascular development is not well understood. This study demonstrates how NP-1 can regulate vasculogenesis and angiogenesis in vitro and in vivo. In homozygous np-1mutant (np-1−/−) murine embryos, vascular sprouting was impaired in the central nervous system and pericardium. Para-aortic splanchnopleural mesoderm (P-Sp) explants fromnp-1−/− mice also had vascular defects in vitro. A monomer of soluble NP-1 (NP-1 tagged with Flag epitope) inhibited vascular development in cultured wild-type P-Sp explants by sequestering VEGF165. In contrast, a dimer of soluble NP-1 (NP-1 fused with the Fc part of human IgG) enhanced vascular development in cultured wild-type P-Sp explants. Moreover, the NP-1–Fc rescued the defective vascular development in culturednp-1−/− P-Sp explants. A low dose of VEGF alone did not promote phosphorylation of VEGFR-2 on endothelial cells from np-1−/− embryos, but simultaneous addition of a low dose of VEGF and NP-1–Fc phosphorylated VEGFR-2 significantly. Moreover, NP-1–Fc rescued the defective vascularity of np-1−/− embryos in vivo. These results suggest that a dimer form of soluble NP-1 delivers VEGF165 to VEGFR-2–positive endothelial cells and promotes angiogenesis.


2000 ◽  
Vol 113 (1) ◽  
pp. 59-69 ◽  
Author(s):  
M.F. Carlevaro ◽  
S. Cermelli ◽  
R. Cancedda ◽  
F. Descalzi Cancedda

Vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) induces endothelial cell migration and proliferation in culture and is strongly angiogenic in vivo. VEGF synthesis has been shown to occur in both normal and transformed cells. The receptors for the factor have been shown to be localized mainly in endothelial cells, however, the presence of VEGF synthesis and the VEGF receptor in cells other than endothelial cells has been demonstrated. Neoangiogenesis in cartilage growth plate plays a fundamental role in endochondral ossification. We have shown that, in an avian in vitro system for chondrocyte differentiation, VEGF was produced and localized in cell clusters totally resembling in vivo cartilage. The factor was synthesized by hypertrophic chondrocytes and was released into their conditioned medium, which is highly chemotactic for endothelial cells. Antibodies against VEGF inhibited endothelial cell migration induced by chondrocyte conditioned media. Similarly, endothelial cell migration was inhibited also by antibodies directed against the VEGF receptor 2/Flk1 (VEGFR2). In avian and mammalian embryo long bones, immediately before vascular invasion, VEGF was distinctly localized in growth plate hypertrophic chondrocytes. In contrast, VEGF was not observed in quiescent and proliferating chondrocytes earlier in development. VEGF receptor 2 colocalized with the factor both in hypertrophic cartilage in vivo and hypertrophic cartilage engineered in vitro, suggesting an autocrine loop in chondrocytes at the time of their maturation to hypertrophic cells and of cartilage erosion. Regardless of cell exposure to exogenous VEGF, VEGFR-2 phosphorylation was recognized in cultured hypertrophic chondrocytes, supporting the idea of an autocrine functional activation of signal transduction in this non-endothelial cell type as a consequence of the endogenous VEGF production. In summary we propose that VEGF is actively responsible for hypertrophic cartilage neovascularization through a paracrine release by chondrocytes, with invading endothelial cells as a target. Furthermore, VEGF receptor localization and signal transduction in chondrocytes strongly support the hypothesis of a VEGF autocrine activity also in morphogenesis and differentiation of a mesoderm derived cell.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3916-3916
Author(s):  
Olga Dashevsky ◽  
Alexander Brill ◽  
Julia Rivo ◽  
David Varon

Abstract Platelet attachment to the subcellular matrix at injured sites of the vasculature is followed by their activation and release of microparticles. Platelet-derived microparticles (PMP) have been shown to be involved in the regulation of hemostasis. However, little is known about the role of PMP in the regulation of angiogenesis and related clinical conditions. We have recently demonstrated that platelets as a cellular system induce angiogenic responses both in vitro and in vivo. In the present study, we investigated the potential role of PMP in angiogenesis. A strong dose-dependent pro-angiogenic effect of PMP in the rat aortic ring model (5.3±2.1 mm2 surface covered with sprouting vessels versus 0.24±0.2 mm2 in the control, p<0.001) was observed. This effect was reversed by selective inhibition of VEGF, bFGF and PDGF (surface covered with vessels 0.7±0.5 mm2, 1.7±1.5 mm2, and 2.4±1.2 mm2, respectively, p<0.02 versus control), but not by inhibition of heparanase (5.1±0.8 mm2, p>0.5 versus control). PMP exert their stimulatory effect via PI3-kinase, Src kinase and ERK, whereas protein kinase C seems not to be involved, as judged by the aortic ring sprouting model. Using confocal and electron microscopy, we also demonstrate that PMP bind to non-activated endothelial cells. In addition, PMP markedly increased invasion of human endothelial cells through a layer of matrigel. This effect was abolished by an inhibitor of VEGF receptor tyrosine phosphorylation or laminaran sulfate (heparanase inhibitor). It was also partially reduced by PDGF blocking mAb, whereas blocking of bFGF had no effect. Furthermore, we have demonstrated that PMP induce angiogenesis in an in vivo model, in which beads (30 μl) of 4% agarose gel containing the substances under study were transplanted subcutaneously into mice. Image analysis of the capillary area revealed the following: control beads − 0.2±0.05 mm2, VEGF + bFGF containing beads − 4.8±1.1 mm2, PMP (100 μg/ml) containing beads − 5.1±1.3 mm2, p<0.001 versus control. The latter finding was further supported by immunohistochemical staining of the skin in the vicinity of the beads for von Willebrand factor, a marker of endothelial cells (control − 4.0±3.2, VEGF+bFGF − 12±4.4, PMP − 17±6.5 capillaries per view field, p<0.05 versus control). Finally, we explored the potential effect of PMP in a rat myocardial infarction model. Ischemia was induced by LAD ligation followed by injection of either PMP or PBS into the ischemic region. Preliminary evaluation of the LAD myocardial territory in sham-operated animals revealed 157±42.0 capillaries per view field. In contrast, number of capillaries observed 3 weeks after induction of ischemia was reduced to 34±21.5. When PMP were injected into the ischemic region, there was an increase in capillary number up to 97±27.3. In conclusion, PMP induce angiogenesis in both in vitro and in vivo models. Local injection of PMP into the ischemic myocardium may improve revascularization.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1397-1397
Author(s):  
Claude Capron ◽  
Catherine Lacout ◽  
Yann Lecluse ◽  
Valérie Jalbert ◽  
Elisabeth Cramer Bordé ◽  
...  

Abstract TGF-β1 is a cytokine with pleiotropic effects. It has been considered that TGF-β1plays a major role on hematopoietic stem cells (HSC) based on in vitro experiment. Achieving in vivo experiments proved to be difficult because constitutive TGF-β1 knock-out (KO) in mice leads to lethality during the first 4 weeks of life from a wasting syndrome related to tissue infiltration by activated T cells and macrophages. For this reason, hematopoiesis of TGF-β1−/− mice has not been studied in details. In contrast the role of TGF-β1 has been recently extensively studied in conditional TGF-β type I receptor (TβRI) KO mice. No clear effect was observed on HSC functions, suggesting that TGF-β1 was not a key physiological regulator of hematopoiesis in the adult. However, these experiments have some limitations. They do not exclude a putative role for TGF-β1 during fetal hematopoiesis and they do not specifically address the role of TGF-β1 on hematopoiesis because KO of TGF-β receptor leads to signaling arrest for all TGF-βs. In addition, other receptors may be involved in TGF-β1 signaling. For these reasons, we have investigated the hematopoiesis of constitutive TGF-β1 KO mice with a mixed Sv129 × CF-1 genetic background allowing the birth of a high proportion of homozygotes. In 2 week-old neonate mice, we have shown a decrease of bone marrow (BM) and spleen progenitors and a decrease of immature progenitors colony forming unit of the spleen (CFU-s). Moreover this was associated with a loss in reconstitutive activity of TGF-β1−/− HSC from BM. However, although asymptomatic, these mice had an excess of activated lymphocytes and an augmentation of Sca-1 antigen on hematopoietic cells suggesting an excess of γ-interferon release. Thus we studied hematopoiesis of 7 to 10 days-old neonate mice, before phenotypic modification and inflammatory cytokine release. Similar results were observed with a decrease in the number of progenitors and in the proliferation of TGF-β1−/− BM cells along with an increased differentiation but without an augmentation in apoptosis. Moreoever, a loss of long term reconstitutive capacity of BM Lineage negative (Lin−) TGF-β1−/− cells along with a diminution of homing of TGF-β1−/− progenitors was found. These results demonstrate that TGF-β1 may play a major role on the HSC/Progenitor compartment in vivo and that this defect does not seem to be linked to the immune disease. To completely overpass the risk of the inflammatory syndrome, we analyzed hematopoiesis of fetal liver (FL) of TGF-β1−/− mice and still found a decrease in progenitors, a profound defect in the proliferative capacities, in long term reconstitutive activity and homing potential of primitive FL hematopoietic cells. Our results demonstrate that TGF-β1 plays an important role during hematopoietic embryonic development. Altogether these findings suggest that TGF-β1 is a potent positive regulator for the in vivo homeostasis of the HSC compartment.


Blood ◽  
2001 ◽  
Vol 98 (7) ◽  
pp. 2077-2083 ◽  
Author(s):  
Kevin G. Otto ◽  
Virginia C. Broudy ◽  
Nancy L. Lin ◽  
Evan Parganas ◽  
Jennifer N. Luthi ◽  
...  

Cellular trafficking of growth factor receptors, including cross-talk among receptors at the cell surface, may be important for signal transduction in normal hematopoietic cells. To test this idea, the signaling domain of Mpl (the thrombopoietin receptor) was targeted to the plasma membrane, or to the cytoplasm of murine marrow cells, and the ability of the cells to proliferate and differentiate in response to Mpl dimerized at the plasma membrane or free in the cytoplasm was assessed. Constructs encoding the signaling domain of Mpl linked to an FK506 binding protein domain (to permit dimerization by the membrane-permeable ligand AP20187) with or without a myristylation sequence (to target the receptor to the plasma membrane) and a hemagglutinin epitope tag were generated and introduced into murine marrow cells using a murine stem cell virus (MSCV)-based retroviral vector. Both populations of transduced marrow cells proliferated in Iscoves modified Dulbecco medium–10% FCS–100 nM AP20187 without exogenous growth factors for more than 100 days and achieved greater than a 107-fold expansion of cells by day 50 (n = 4 transductions). Growth was dimerizer dependent, and myeloid, erythroid, and megakaryocytic progenitors were generated. Activation of Mpl either at the plasma membrane or in the cytoplasm allowed for the terminal maturation of transduced progenitor cells. Introduction of membrane-targeted or cytoplasmic Mpl into fetal liver cells from homozygous JAK2 knock-out mice or wild-type littermates demonstrated that both forms of Mpl require JAK2 for signaling. These data show that the activation of Mpl independent of its normal plasma membrane location can support production of the full range of normal hematopoietic progenitor cells in vitro.


2004 ◽  
Vol 287 (4) ◽  
pp. H1554-H1560 ◽  
Author(s):  
Chandrani Sarkar ◽  
Debanjan Chakroborty ◽  
Rita Basu Mitra ◽  
Samir Banerjee ◽  
Partha Sarathi Dasgupta ◽  
...  

Vascular permeability factor (VPF)/VEGF is a potent multifunctional cytokine and growth factor that has critical roles in vasculogenesis and in both physiological and pathological angiogenesis. Because it has been recently shown that the neurotransmitter dopamine at pharmacological dose can inhibit VEGF/VPF-mediated microvascular permeability, proliferation, and migration of endothelial cells in vitro, we therefore hypothesized that endogenous dopamine may regulate the actions of VPF/VEGF in vivo. We report that VPF/VEGF-induced phosphorylation of VEGF receptor 2, focal adhesion kinase, and MAPK in the endothelial cells is strikingly increased in both dopamine-depleted and dopamine D2 receptor knockout mice compared with normal controls, thereby indicating that endogenous dopamine regulate these critical signaling cascades required for the in vivo endothelial functions of VPF/VEGF. Together, these observations provide new mechanistic insight into the dopamine-mediated inhibition of the activities of VPF/VEGF and suggest that endogenous neurotransmitter dopamine might be an important physiological regulator of VPF/VEGF activities in vivo.


2010 ◽  
Vol 298 (5) ◽  
pp. R1279-R1287 ◽  
Author(s):  
U. Shergill ◽  
A. Das ◽  
D. Langer ◽  
RS. Adluri ◽  
N. Maulik ◽  
...  

Angiogenesis occurs through a convergence of diverse signaling mechanisms with prominent pathways that include autocrine effects of endothelial nitric oxide (NO) synthase (eNOS)-derived NO and vascular endothelial growth factor (VEGF). However, the redundant and distinct roles of NO and VEGF in angiogenesis remain incompletely defined. Here, we use the partial hepatectomy model in mice genetically deficient in eNOS to ascertain the influence of eNOS-derived NO on the angiogenesis that accompanies liver regeneration. While sinusoidal endothelial cell (SEC) eNOS promotes angiogenesis in vitro, surprisingly the absence of eNOS did not influence the angiogenesis that occurs after partial hepatectomy in vivo. While this observation could not be attributed to induction of alternate NOS isoforms, it was associated with induction of VEGF signaling as evidenced by enhanced levels of VEGF ligand in regenerating livers from mice genetically deficient in eNOS. However, surprisingly, mice that were genetically heterozygous for deficiency in the VEGF receptor, fetal liver kinase-1, also maintained unimpaired capacity for liver regeneration. In summary, inhibition of VEGF- and NO-dependent angiogenesis does not impair liver regeneration, indicating signaling redundancies that allow liver regeneration to continue in the absence of this canonical vascular pathway.


Blood ◽  
1999 ◽  
Vol 94 (7) ◽  
pp. 2161-2168 ◽  
Author(s):  
H. Glimm ◽  
C.J. Eaves

Recently, culture conditions that stimulate the proliferation of primitive hematopoietic cells defined by various phenotypic and functional endpoints in vitro have been identified. However, evidence that they support a high probability of self-renewal leading to a large net expansion in vitro of transplantable cells with lympho-myeloid repopulating ability has been more difficult to obtain. The present study was designed to investigate whether the low overall expansion of human repopulating hematopoietic cells seen in vitro reflects a selective unresponsiveness of these rare cells to the growth factors currently used to stimulate them or, alternatively, whether they do proliferate in vitro but lose engrafting potential. For this, we used a high-resolution procedure for tracking and reisolating cells as a function of their proliferation history based on the loss of cellular fluorescence after staining with (5- and 6-) carboxyfluorescein diacetate succinimidyl ester. The results show that the vast majority of long-term culture-initiating cells and in vivo lympho-myeloid competitive repopulating units present in 5-day suspension cultures initiated with CD34+ human cord blood and fetal liver cells are the progeny of cells that have divided at least once in response to stimulation by interleukin-3, interleukin-6, granulocyte colony-stimulating factor, Steel factor, and Flt3-ligand. Thus, most human repopulating cells from these two sources are stimulated to undergo multiple divisions under currently used short-term suspension culture conditions and a proportion of these retain engraftment potential.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Juliete A. F. Silva ◽  
Xiaoping Qi ◽  
Maria B. Grant ◽  
Michael E. Boulton

AbstractThe vascular endothelial growth factor receptors (VEGFRs) can shape the neovascular phenotype of vascular endothelial cells when translocated to the nucleus, however the spatial and temporal changes in the intracellular distribution and translocation of VEGFRs to the nucleus and the organelles involved in this process is unclear. This study reports the effect of exogenous VEGF on translocation of VEGFRs and organelles in micro- and macrovascular endothelial cells. We showed that VEGF is responsible for: a rapid and substantial nuclear translocation of VEGFRs; VEGFR1 and VEGFR2 exhibit distinct spatial, temporal and structural translocation characteristics both in vitro and in vivo and this determines the nuclear VEGFR1:VEGFR2 ratio which differs between microvascular and macrovascular cells; VEGFR2 nuclear translocation is associated with the endosomal pathway transporting the receptor from Golgi in microvascular endothelial cells; and an increase in the volume of intracellular organelles. In conclusion, the nuclear translocation of VEGFRs is both receptor and vessel (macro versus micro) dependent and the endosomal pathway plays a key role in the translocation of VEGFRs to the nucleus and the subsequent export to the lysosomal system. Modulating VEGF-mediated VEGFR1 and VEGFR2 intracellular transmigration pathways may offer an alternative for the development of new anti-angiogenic therapies.


2010 ◽  
Vol 30 (14) ◽  
pp. 3620-3634 ◽  
Author(s):  
Deena M. Leslie Pedrioli ◽  
Terhi Karpanen ◽  
Vasilios Dabouras ◽  
Giorgia Jurisic ◽  
Glenn van de Hoek ◽  
...  

ABSTRACT The lymphatic vascular system maintains tissue fluid homeostasis, helps mediate afferent immune responses, and promotes cancer metastasis. To address the role microRNAs (miRNAs) play in the development and function of the lymphatic vascular system, we defined the in vitro miRNA expression profiles of primary human lymphatic endothelial cells (LECs) and blood vascular endothelial cells (BVECs) and identified four BVEC signature and two LEC signature miRNAs. Their vascular lineage-specific expression patterns were confirmed in vivo by quantitative real-time PCR and in situ hybridization. Functional characterization of the BVEC signature miRNA miR-31 identified a novel BVEC-specific posttranscriptional regulatory mechanism that inhibits the expression of lymphatic lineage-specific transcripts in vitro. We demonstrate that suppression of lymphatic differentiation is partially mediated via direct repression of PROX1, a transcription factor that functions as a master regulator of lymphatic lineage-specific differentiation. Finally, in vivo studies of Xenopus and zebrafish demonstrated that gain of miR-31 function impaired venous sprouting and lymphatic vascular development, thus highlighting the importance of miR-31 as a negative regulator of lymphatic development. Collectively, our findings identify miR-31 is a potent regulator of vascular lineage-specific differentiation and development in vertebrates.


Sign in / Sign up

Export Citation Format

Share Document