scholarly journals Phylogenetic Conservation and Homology Modeling Help Reveal a Novel Domain within the Budding Yeast Heterochromatin Protein Sir1

2008 ◽  
Vol 29 (3) ◽  
pp. 687-702 ◽  
Author(s):  
Zhonggang Hou ◽  
John R. Danzer ◽  
Liza Mendoza ◽  
Melissa E. Bose ◽  
Ulrika Müller ◽  
...  

ABSTRACTThe yeast Sir1 protein's ability to bind and silence the cryptic mating-type locusHMRarequires a protein-protein interaction between Sir1 and the origin recognition complex (ORC). A domain within the C-terminal half of Sir1, the Sir1 ORC interaction region (Sir1OIR), and the conserved bromo-adjacent homology (BAH) domain within Orc1, the largest subunit of ORC, mediate this interaction. The structure of the Sir1OIR-Orc1BAH complex is known. Sir1OIR and Orc1BAH interacted with a high affinity in vitro, but the Sir1OIR did not inhibit Sir1-dependent silencing when overproduced in vivo, suggesting that other regions of Sir1 helped it bindHMRa. Comparisons of diverged Sir1 proteins revealed two highly conserved regions, N1 and N2, within Sir1's poorly characterized N-terminal half. An N-terminal portion of Sir1 (residues 27 to 149 [Sir127-149]) is similar in sequence to the Sir1OIR; homology modeling predicted a structure for Sir127-149in which N1 formed a submodule similar to the known Orc1BAH-interacting surface on Sir1. Consistent with these findings, two-hybrid assays indicated that the Sir1 N terminus could interact with BAH domains. Amino acid substitutions within or near N1 or N2 reduced full-length Sir1's ability to bind and silenceHMRaand to interact with Orc1BAH in a two-hybrid assay. Purified recombinant Sir1 formed a large protease-resistant structure within which the Sir1OIR domain was protected, and Orc1BAH bound Sir1OIR more efficiently than full-length Sir1 in vitro. Thus, the Sir1 N terminus exhibited both positive and negative roles in the formation of a Sir1-ORC silencing complex. This functional duality might contribute to Sir1's selectivity for silencer-bound ORCs in vivo.

2000 ◽  
Vol 350 (3) ◽  
pp. 741-746 ◽  
Author(s):  
Julian GRUSOVIN ◽  
Violet STOICHEVSKA ◽  
Keith H. GOUGH ◽  
Katrina NUNAN ◽  
Colin W. WARD ◽  
...  

munc18c is a critical protein involved in trafficking events associated with syntaxin 4 and which also mediates inhibitory effects on vesicle docking and/or fusion. To investigate the domains of munc18c responsible for its interaction with syntaxin 4, fragments of munc18c were generated and their interaction with syntaxin 4 examined in vivo by the yeast two-hybrid assay. In vitro protein–protein interaction studies were then used to confirm that the interaction between the proteins was direct. Full-length munc18c1–592, munc18c1–139 and munc18c1–225, but not munc18c226–592, munc18c1–100, munc18c43–139 or munc18c66–139, interacted with the cytoplasmic portion of syntaxin 4, Stx42–273, as assessed by yeast two-hybrid assay of growth on nutritionally deficient media and by β-galactosidase reporter induction. The N-terminal predicted helix-a-helix-b-helix-c region of syntaxin 4, Stx429–157, failed to interact with full-length munc18c1–592, indicating that a larger portion of syntaxin 4 is necessary for the interaction. The yeast two-hybrid results were confirmed by protein–protein interaction studies between Stx42–273 and glutathione S-transferase fusion proteins of munc18c. Full-length munc18c1–592, munc18c1–139 and munc18c1–225 interacted with Stx42–273 whereas munc18c1–100 did not, consistent with the yeast two-hybrid data. These data thus identify a region of munc18c between residues 1 and 139 as a minimal domain for its interaction with syntaxin 4.


1999 ◽  
Vol 19 (11) ◽  
pp. 7828-7840 ◽  
Author(s):  
Alok Kumar Sil ◽  
Samina Alam ◽  
Ping Xin ◽  
Ly Ma ◽  
Melissa Morgan ◽  
...  

ABSTRACT The Gal3, Gal80, and Gal4 proteins of Saccharomyces cerevisiae comprise a signal transducer that governs the galactose-inducible Gal4p-mediated transcription activation ofGAL regulon genes. In the absence of galactose, Gal80p binds to Gal4p and prohibits Gal4p from activating transcription, whereas in the presence of galactose, Gal3p binds to Gal80p and relieves its inhibition of Gal4p. We have found that immunoprecipitation of full-length Gal4p from yeast extracts coprecipitates less Gal80p in the presence than in the absence of Gal3p, galactose, and ATP. We have also found that retention of Gal80p by GSTG4AD (amino acids [aa] 768 to 881) is markedly reduced in the presence compared to the absence of Gal3p, galactose, and ATP. Consistent with these in vitro results, an in vivo two-hybrid genetic interaction between Gal80p and Gal4p (aa 768 to 881) was shown to be weaker in the presence than in the absence of Gal3p and galactose. These compiled results indicate that the binding of Gal3p to Gal80p results in destabilization of a Gal80p-Gal4p complex. The destabilization was markedly higher for complexes consisting of G4AD (aa 768 to 881) than for full-length Gal4p, suggesting that Gal80p relocated to a second site on full-length Gal4p. Congruent with the idea of a second site, we discovered a two-hybrid genetic interaction involving Gal80p and the region of Gal4p encompassing aa 225 to 797, a region of Gal4p linearly remote from the previously recognized Gal80p binding peptide within Gal4p aa 768 to 881.


2011 ◽  
Vol 435 (1) ◽  
pp. 167-174 ◽  
Author(s):  
Holger Schuhmann ◽  
Ulrike Mogg ◽  
Iwona Adamska

Deg/HtrA proteases are a large group of ATP-independent serine endoproteases found in almost every organism. Their usual domain arrangement comprises a trypsin-type protease domain and one or more PDZ domains. All Deg/HtrA proteases form homo-oligomers with trimers as the basic unit, where the active protease domain mediates the interaction between individual monomers. Among the members of the Deg/HtrA protease family, the plant protease DEG7 is unique since it contains two protease domains (one active and one degenerated) and four PDZ domains. In the present study, we investigated the oligomerization behaviour of this unusual protease using yeast two-hybrid analysis in vivo and with recombinant protein in vitro. We show that DEG7 forms trimeric complexes, but in contrast with other known Deg/HtrA proteases, it shows a new principle of oligomerization, where trimerization is based on the interactions between degenerated protease domains. We propose that, during evolution, a duplicated active protease domain degenerated and specialized in protein–protein interaction and complex formation.


2008 ◽  
Vol 412 (2) ◽  
pp. 265-273 ◽  
Author(s):  
Ko Momotani ◽  
Alexander S. Khromov ◽  
Tsuyoshi Miyake ◽  
P. Todd Stukenberg ◽  
Avril V. Somlyo

The present study demonstrates different functional domains of a recently described centrosomal protein, Cep57 (centrosomal protein 57). Endogenous Cep57 protein and ectopic expression of full-length protein or the N-terminal coiled-coil domain localize to the centrosome internal to γ-tubulin, suggesting that it is either on both centrioles or on a centromatrix component. The N-terminus can also multimerize with the N-terminus of other Cep57 molecules. The C-terminus contains a second coiled-coil domain that directly binds to MTs (microtubules). This domain both nucleates and bundles MTs in vitro. This activity was also seen in vivo, as overexpression of full-length Cep57 or the C-terminus generates nocodazole-resistant MT cables in cells. Based on the present findings, we propose that Cep57 serves as a link with its N-terminus anchored to the centriole or centromatrix and its C-terminus to MTs.


2006 ◽  
Vol 26 (8) ◽  
pp. 3256-3265 ◽  
Author(s):  
Jessica J. Connelly ◽  
Peihua Yuan ◽  
Hao-Chi Hsu ◽  
Zhizhong Li ◽  
Rui-Ming Xu ◽  
...  

ABSTRACT Previous work has shown that the N terminus of the Saccharomyces cerevisiae Sir3 protein is crucial for the function of Sir3 in transcriptional silencing. Here, we show that overexpression of N-terminal fragments of Sir3 in strains lacking the full-length protein can lead to some silencing of HML and HMR. Sir3 contains a BAH (bromo-adjacent homology) domain at its N terminus. Overexpression of this domain alone can lead to silencing as long as Sir1 is overexpressed and Sir2 and Sir4 are present. Overexpression of the closely related Orc1 BAH domain can also silence in the absence of any Sir3 protein. A previously characterized hypermorphic sir3 mutation, D205N, greatly improves silencing by the Sir3 BAH domain and allows it to bind to DNA and oligonucleosomes in vitro. A previously uncharacterized region in the Sir1 N terminus is required for silencing by both the Sir3 and Orc1 BAH domains. The structure of the Sir3 BAH domain has been determined. In the crystal, the molecule multimerizes in the form of a left-handed superhelix. This superhelix may be relevant to the function of the BAH domain of Sir3 in silencing.


2009 ◽  
Vol 32 (9) ◽  
pp. 600-610 ◽  
Author(s):  
Madanahally D. Kiran ◽  
Donna E. Akiyoshi ◽  
Andrea Giacometti ◽  
Oscar Cirioni ◽  
Giorgio Scalise ◽  
...  

RIP is a novel antibiotic against staphylococci. It acts at least in part by competing with RNAIII activating protein (RAP) by downregulating TRAP histidine phosphorylation, and by downregulating the expression of the Acessory Gene Regulator (agr). While much is known about the function of the agr as a quorum sensing system that regulates virulence, not much is known about TRAP. TRAP is a 167-kDa protein that is highly conserved among staphylococci and is involved in DNA protection from stress. TRAP is membrane-associated but does not have a transmembrane domain, and thus it may be bound to the membrane through other proteins. To search for these proteins, protein-protein interaction studies were carried out using a bacterial two-hybrid system, and OpuCA was discovered as a TRAP-binding protein. OpuCA is an ATP binding-cytoplasmic (ABC) domain of an OpuC ABC transporter. S. aureus OpuC– mutant strain was constructed and shown to be less tolerant to salt stress, and was defective in choline uptake. OpuC– cells were less pathogenic and showed reduced TRAP phosphorylation and agr activity, did not respond to RAP, and were defective in biofilm formation in vitro and in vivo. These results suggest that OpuC acts as a transporter and also plays a role in S. aureus pathogenesis.


2013 ◽  
Vol 288 (23) ◽  
pp. 16629-16644 ◽  
Author(s):  
Claudia Fecher-Trost ◽  
Ulrich Wissenbach ◽  
Andreas Beck ◽  
Pascal Schalkowsky ◽  
Christof Stoerger ◽  
...  

TRPV6 channels function as epithelial Ca2+ entry pathways in the epididymis, prostate, and placenta. However, the identity of the endogenous TRPV6 protein relies on predicted gene coding regions and is only known to a certain level of approximation. We show that in vivo the TRPV6 protein has an extended N terminus. Translation initiates at a non-AUG codon, at ACG, which is decoded by methionine and which is upstream of the annotated AUG, which is not used for initiation. The in vitro properties of channels formed by the extended full-length TRPV6 proteins and the so-far annotated and smaller TRPV6 are similar, but the extended N terminus increases trafficking to the plasma membrane and represents an additional scaffold for channel assembly. The increased translation of the smaller TRPV6 cDNA version may overestimate the in vivo situation where translation efficiency may represent an additional mechanism to tightly control the TRPV6-mediated Ca2+ entry to prevent deleterious Ca2+ overload.


Genetics ◽  
1999 ◽  
Vol 152 (1) ◽  
pp. 73-87 ◽  
Author(s):  
Margaret K Shirra ◽  
Karen M Arndt

AbstractBinding of the TATA-binding protein (TBP) to the promoter is a pivotal step in RNA polymerase II transcription. To identify factors that regulate TBP, we selected for suppressors of a TBP mutant that exhibits promoter-specific defects in activated transcription in vivo and severely reduced affinity for TATA boxes in vitro. Dominant mutations in SNF4 and recessive mutations in REG1, OPI1, and RTF2 were isolated that specifically suppress the inositol auxotrophy of the TBP mutant strains. OPI1 encodes a repressor of INO1 transcription. REG1 and SNF4 encode regulators of the Glc7 phosphatase and Snf1 kinase, respectively, and have well-studied roles in glucose repression. In two-hybrid assays, one SNF4 mutation enhances the interaction between Snf4 and Snf1. Suppression of the TBP mutant by our reg1 and SNF4 mutations appears unrelated to glucose repression, since these mutations do not alleviate repression of SUC2, and glucose levels have little effect on INO1 transcription. Moreover, mutations in TUP1, SSN6, and GLC7, but not HXK2 and MIG1, can cause suppression. Our data suggest that association of TBP with the TATA box may be regulated, directly or indirectly, by a substrate of Snf1. Analysis of INO1 transcription in various mutant strains suggests that this substrate is distinct from Opi1.


2005 ◽  
Vol 4 (4) ◽  
pp. 832-835 ◽  
Author(s):  
Terri S. Rice ◽  
Min Ding ◽  
David S. Pederson ◽  
Nicholas H. Heintz

ABSTRACT Here we show that the Saccharomyces cerevisiae tRNAHis guanylyltransferase Thg1p interacts with the origin recognition complex in vivo and in vitro and that overexpression of hemagglutinin-Thg1p selectively impedes growth of orc2-1(Ts) cells at the permissive temperature. Studies with conditional mutants indicate that Thg1p couples nuclear division and migration to cell budding and cytokinesis in yeast.


2003 ◽  
Vol 23 (19) ◽  
pp. 6944-6957 ◽  
Author(s):  
Nickolai A. Barlev ◽  
Alexander V. Emelyanov ◽  
Paola Castagnino ◽  
Philip Zegerman ◽  
Andrew J. Bannister ◽  
...  

ABSTRACT In yeast, the transcriptional adaptor yeast Ada2 (yAda2) is a part of the multicomponent SAGA complex, which possesses histone acetyltransferase activity through action of the yGcn5 catalytic enzyme. yAda2, among several SAGA proteins, serves to recruit SAGA to genes via interactions with promoter-bound transcription factors. Here we report identification of a new human Ada2 homologue, hAda2β. Ada2β differs both biochemically and functionally from the previously characterized hAda2α, which is a stable component of the human PCAF (human Gcn5 homologue) acetylase complex. Ada2β, relative to Ada2α, interacted selectively, although not stably, with the Gcn5-containing histone acetylation complex TFTC/STAGA. In addition, Ada2β interacted with Baf57 (a component of the human Swi/Snf complex) in a yeast two-hybrid screen and associated with human Swi/Snf in vitro. In functional assays, hAda2β (but not Ada2α), working in concert with Gcn5 (but not PCAF) or Brg1 (the catalytic component of hSwi/Snf complex), increased transcription via the B-cell-specific transcription factor Pax5/BSAP. These findings support the view that Gcn5 and PCAF have distinct roles in vivo and suggest a new mechanism of coactivator function, in which a single adaptor protein (Ada2β) can coordinate targeting of both histone acetylation and chromatin remodeling activities.


Sign in / Sign up

Export Citation Format

Share Document