scholarly journals Simultaneous Mutation of Methylated Lysine Residues in Histone H3 Causes Enhanced Gene Silencing, Cell Cycle Defects, and Cell Lethality in Saccharomyces cerevisiae

2007 ◽  
Vol 27 (19) ◽  
pp. 6832-6841 ◽  
Author(s):  
Yi Jin ◽  
Amy M. Rodriguez ◽  
Julie D. Stanton ◽  
Ana A. Kitazono ◽  
John J. Wyrick

ABSTRACT The methylation of specific lysine residues in histone H3 is integral to transcription regulation; however, little is known about how combinations of methylated lysine residues act in concert to regulate genome-wide transcription. We have systematically mutated methylated histone lysine residues in yeast and found that the triple mutation of H3K4, H3K36, and H3K79 to arginine (H3 K4,36,79R) is lethal. The histone H3 K4,36,79R mutant causes a mitotic cell cycle delay and a progressive transcription defect that initiates in telomere regions and then spreads into the chromosome. This effect is mediated by the silent information regulator (SIR) silencing complex, as we observe increased binding of the SIR complex to genomic regions adjacent to yeast telomeres in the H3 K4,36,79R mutant and deletion of SIR2, SIR3, or SIR4 rescues the lethal phenotype. Curiously, a yeast strain in which the histone methyltransferase genes are simultaneously deleted is viable. Indeed, deletion of the histone methyltransferase genes can suppress the H3 K4,36,79R lethal phenotype. These and other data suggest that the cause of lethality may in part be due to the association of histone methyltransferase enzymes with a histone substrate that cannot be methylated.

2021 ◽  
Author(s):  
Roman Hillje ◽  
Lucilla Luzi ◽  
Stefano Amatori ◽  
Mirco Fanelli ◽  
Pier Giuseppe Pelicci ◽  
...  

Abstract To disclose the epigenetic drift of time passing, we determined the genome-wide distributions of mono- and tri-methylated lysine 4 and acetylated and tri-methylated lysine 27 of histone H3 in the livers of healthy 3, 6 and 12 months old C57BL/6 mice. The comparison of different age profiles of histone H3 marks revealed global redistribution of histone H3 modifications with time, in particular in intergenic regions and near transcription start sites, as well as altered correlation between the profiles of different histone modifications. Moreover, feeding mice with caloric restriction diet, a treatment known to retard aging, preserved younger state of histone H3 in these genomic regions.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Chrissy H. Roberts ◽  
Sander Ouburg ◽  
Mark D. Preston ◽  
Henry J. C. de Vries ◽  
Martin J. Holland ◽  
...  

Chlamydia trachomatis is the most commonly diagnosed bacterial sexually transmitted infection and can lead to tubal factor infertility, a disease characterised by fibrosis of the fallopian tubes. Genetic polymorphisms in molecular pathways involving G protein-coupled receptor signalling, the Akt/PI3K cascade, the mitotic cell cycle, and immune response have been identified in association with the development of trachomatous scarring, an ocular form of chlamydia-related fibrotic pathology. In this case-control study, we performed genome-wide association and pathways-based analysis in a sample of 71 Dutch women who attended an STI clinic who were seropositive for Chlamydia trachomatis antibodies and 169 high-risk Dutch women who sought similar health services but who were seronegative. We identified two regions of within-gene SNP association with Chlamydia trachomatis serological response and found that GPCR signalling and cell cycle pathways were also associated with the trait. These pathway-level associations appear to be common to immunological sequelae of chlamydial infections in both ocular and urogenital tropisms. These pathways may be central mediators of human refractoriness to chlamydial diseases.


2019 ◽  
Vol 47 (16) ◽  
pp. 8439-8451 ◽  
Author(s):  
Alberto González-Medina ◽  
Elena Hidalgo ◽  
José Ayté

Abstract In fission yeast, MBF-dependent transcription is inactivated at the end of S phase through a negative feedback loop that involves the co-repressors, Yox1 and Nrm1. Although this repression system is well known, the molecular mechanisms involved in MBF activation remain largely unknown. Compacted chromatin constitutes a barrier to activators accessing promoters. Here, we show that chromatin regulation plays a key role in activating MBF-dependent transcription. Gcn5, a part of the SAGA complex, binds to MBF-regulated promoters through the MBF co-activator Rep2 in a cell cycle-dependent manner and in a reverse correlation to the binding of the MBF co-repressors, Nrm1 or Yox1. We propose that the co-repressors function as physical barriers to SAGA recruitment onto MBF promoters. We also show that Gcn5 acetylates specific lysine residues on histone H3 in a cell cycle-regulated manner. Furthermore, either in a gcn5 mutant or in a strain in which histone H3 is kept in an unacetylated form, MBF-dependent transcription is downregulated. In summary, Gcn5 is required for the full activation and correct timing of MBF-regulated gene transcription.


2004 ◽  
Vol 24 (20) ◽  
pp. 8823-8833 ◽  
Author(s):  
Nevin Sabet ◽  
Sam Volo ◽  
Cailin Yu ◽  
James P. Madigan ◽  
Randall H. Morse

ABSTRACT The histone amino termini have emerged as key targets for a variety of modifying enzymes that function as transcriptional coactivators and corepressors. However, an important question that has remained largely unexplored is the extent to which specific histone amino termini are required for the activating and repressive functions of these enzymes, Here we address this issue by focusing on the prototypical histone deacetylase, Rpd3p, in the budding yeast Saccharomyces cerevisiae. We show that targeting Rpd3p to a reporter gene in this yeast can partially repress transcription when either the histone H3 or the histone H4 amino terminus is deleted, indicating that the “tails” are individually dispensable for repression by Rpd3p. In contrast, we find that the effect of rpd3 gene disruption on global gene expression is considerably reduced in either a histone H3Δ1-28 (H3 lacking the amino-terminal 28 amino acids) or a histone H4(K5,8,12,16Q) (H4 with lysine residues 5, 8, 12, and 16 changed to glutamine residues) background compared to the wild-type background, indicating a requirement for one or both of these histone tails in Rpd3p-mediated regulation for many genes. These results suggest that acetylation of either the H3 or the H4 amino terminus could suffice to allow the activation of such genes. We also examine the relationship between H3 tails and H4 tails in global gene expression and find substantial overlap among the gene sets regulated by these histone tails. We also show that the effects on genome-wide expression of deleting the H3 or H4 amino terminus are similar but not identical to the effects of mutating the lysine residues in these same regions. These results indicate that the gene regulatory potential of the H3 and H4 amino termini is substantially but not entirely contained in these modifiable lysine residues.


2001 ◽  
Vol 21 (19) ◽  
pp. 6484-6494 ◽  
Author(s):  
Laurence Vandel ◽  
Estelle Nicolas ◽  
Olivier Vaute ◽  
Roger Ferreira ◽  
Slimane Ait-Si-Ali ◽  
...  

ABSTRACT The E2F transcription factor controls the cell cycle-dependent expression of many S-phase-specific genes. Transcriptional repression of these genes in G0 and at the beginning of G1by the retinoblasma protein Rb is crucial for the proper control of cell proliferation. Rb has been proposed to function, at least in part, through the recruitment of histone deacetylases. However, recent results indicate that other chromatin-modifying enzymes are likely to be involved. Here, we show that Rb also interacts with a histone methyltransferase, which specifically methylates K9 of histone H3. The results of coimmunoprecipitation experiments of endogenous or transfected proteins indicate that this histone methyltransferase is the recently described heterochromatin-associated protein Suv39H1. Interestingly, phosphorylation of Rb in vitro as well as in vivo abolished the Rb-Suv39H1 interaction. We also found that Suv39H1 and Rb cooperate to repress E2F activity and that Suv39H1 could be recruited to E2F1 through its interaction with Rb. Taken together, these data indicate that Suv39H1 is involved in transcriptional repression by Rb and suggest an unexpected link between E2F regulation and heterochromatin.


2019 ◽  
Author(s):  
Hrvoje Galic ◽  
Pauline Vasseur ◽  
Marta Radman-Livaja

AbstractThe budding yeast SIR complex (Silent Information Regulator) is the principal actor in heterochromatin formation, which causes epigenetically regulated gene silencing phenotypes. The maternal chromatin bound SIR complex is disassembled during replication. Consequently, if heterochromatin is to be restored on both daughter strands, the SIR complex has to be reformed on both strands to pre-replication levels. The dynamics of SIR complex maintenance and re-formation during the cell-cycle and in different growth conditions are however not clear. Understanding exchange rates of SIR subunits during the cell cycle and their distribution pattern to daughter chromatids after replication has important implications for how heterochromatic states may be inherited and therefore how epigenetic states are maintained from one cellular generation to the next. We used the tag switch RITE system to measure genome wide turnover rates of the SIR subunit Sir3 before and after exit from stationary phase and show that maternal Sir3 subunits are completely replaced with newly synthesized Sir3 at subtelomeric regions during the first cell cycle after release from stationary phase. The SIR complex is therefore not “inherited” and the silenced state has to be established de novo upon exit from stationary phase. Additionally, our analysis of genome-wide transcription dynamics shows that precise Sir3 dosage is needed for the optimal up-regulation of “growth” genes during the first cell-cycle after release from stationary phase.


1998 ◽  
Vol 2 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Raymond J. Cho ◽  
Michael J. Campbell ◽  
Elizabeth A. Winzeler ◽  
Lars Steinmetz ◽  
Andrew Conway ◽  
...  

2019 ◽  
Vol 60 (11) ◽  
pp. 2436-2448
Author(s):  
Jialong Li ◽  
Fan Zhang ◽  
Yuhong Li ◽  
Weicai Yang ◽  
Rongcheng Lin

Abstract Protoporphyrinogen IX oxidase1 (PPO1) catalyzes the oxidation of protoporphyrinogen IX to form protoporphyrin IX in the plastid tetrapyrrole biosynthesis pathway and is also essential for plastid RNA editing in Arabidopsis thaliana. The Arabidopsis ppo1-1 mutation was previously shown to be seedling lethal; however, in this study, we showed that the heterozygous ppo1-1/+ mutant exhibited reproductive growth defects characterized by reduced silique length and seed set, as well as aborted pollen development. In this mutant, the second mitotic division was blocked during male gametogenesis, whereas female gametogenesis was impaired at the one-nucleate stage. Before perishing at the seedling stage, the homozygous ppo1-1 mutant displayed reduced hypocotyl and root length, increased levels of reactive oxygen species accumulation and elevated cell death, especially under light conditions. Wild-type seedlings treated with acifluorfen, a PPO1 inhibitor, showed similar phenotypes to the ppo1-1 mutants, and both plants possessed a high proportion of 2C nuclei and a low proportion of 8C nuclei compared with the untreated wild type. Genome-wide RNA-seq analysis showed that a number of genes, including cell cycle-related genes, were differentially regulated by PPO1. Consistently, PPO1 was highly expressed in the pollen, anther, pistil and root apical meristem cells actively undergoing cell division. Our study reveals a role for PPO1 involved in the mitotic cell cycle during gametogenesis and seedling development.


Sign in / Sign up

Export Citation Format

Share Document