scholarly journals The budding yeast heterochromatic SIR complex resets upon exit from stationary phase

2019 ◽  
Author(s):  
Hrvoje Galic ◽  
Pauline Vasseur ◽  
Marta Radman-Livaja

AbstractThe budding yeast SIR complex (Silent Information Regulator) is the principal actor in heterochromatin formation, which causes epigenetically regulated gene silencing phenotypes. The maternal chromatin bound SIR complex is disassembled during replication. Consequently, if heterochromatin is to be restored on both daughter strands, the SIR complex has to be reformed on both strands to pre-replication levels. The dynamics of SIR complex maintenance and re-formation during the cell-cycle and in different growth conditions are however not clear. Understanding exchange rates of SIR subunits during the cell cycle and their distribution pattern to daughter chromatids after replication has important implications for how heterochromatic states may be inherited and therefore how epigenetic states are maintained from one cellular generation to the next. We used the tag switch RITE system to measure genome wide turnover rates of the SIR subunit Sir3 before and after exit from stationary phase and show that maternal Sir3 subunits are completely replaced with newly synthesized Sir3 at subtelomeric regions during the first cell cycle after release from stationary phase. The SIR complex is therefore not “inherited” and the silenced state has to be established de novo upon exit from stationary phase. Additionally, our analysis of genome-wide transcription dynamics shows that precise Sir3 dosage is needed for the optimal up-regulation of “growth” genes during the first cell-cycle after release from stationary phase.

2001 ◽  
Vol 114 (10) ◽  
pp. 1798-1799
Author(s):  
S.K. Evans ◽  
V. Lundblad

The Yeast Nucleus edited by P. Fantes and J. Beggs Oxford University Press (2000) 338 pages. ISBN 0–19-963772-5?32.50 Without question, numerous studies in yeast and mammals have revealed a striking commonality of underlying mechanisms that govern basic biological operations. Perhaps the most famous example from recent years has been the recognition that genes required for maintaining the yeast genome play a critical role in preventing cancer in humans. However, examining the molecular differences - the variations on a common theme, so to speak - can also be useful for understanding core biological processes. These ideas are the foundation for The Yeast Nucleus, a valuable contribution to Oxford University Press's ‘Frontiers in Molecular Biology’ series. The textbook compares and contrasts various nuclear processes in budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe), pointing out the similarities - and differences - that make these two somewhat unrelated yeasts the dominant model systems for studying fundamental eukaryotic processes. Each of the nine chapters is an authoritative review written by experts in the field. The opening chapter surveys the technologies that have propelled efforts to elucidate the functions of the ~6000 predicted protein-encoding genes in S. cerevisiae; this chapter includes sections on bioinformatics, genome-wide transcription and proteome analysis. The next four chapters - covering DNA replication, the mitotic cell cycle, cell cycle checkpoints and nuclear division - form a well-integrated quartet that describes the complex molecular and genetic pathways governing faithful chromosome replication and segregation. The cell cycle chapter, in particular, is presented from a unique perspective: rather than focusing on the physiological changes that occur at each stage, it instead illustrates the molecular machines (i.e. the cyclin-dependent kinases) that propel the cell cycle. The fifth chapter provides a comprehensive discussion on RNA polymerase II transcription in S. cerevisiae that incorporates sections on general transcription factors, coactivators and repressors. It also includes a brief synopsis of the effects of chromatin on transcription, which creates a nice segue to the following chapter on the structure of chromatin at centromeres and telomeres. The final two chapters, on pre-mRNA splicing and nuclear transport of RNA and proteins, focus mainly on the mechanisms identified in budding yeast. The only obvious shortcoming with respect to the scope of this textbook is that it fails to include in-depth discussions of DNA repair and recombination. This publication has several attributes that make it an excellent reference source. First, it is a comprehensive review that weaves a great deal of supplementary information into each chapter. It not only is extensively referenced, but also frequently includes citations to reviews and to yeast database websites for further details. Second, the book is well written and readable. Each chapter is organized in a logical sequence - for example, the chapter on DNA replication starts with origin recognition and ends with Okazaki fragment processing. Furthermore, although the descriptions of genetic and molecular pathways are often encyclopedic, extensive summary tables and/or simple diagrams supplement the discussions and assist the reader in grasping the information. The value of such summary tables can be greatly appreciated when navigating through the maelstrom of mismatched S. cerevisiae and S. pombe CDC and RAD gene nomenclature. Lastly, there is an overall congruity that pulls together the topics of the separate chapters and relates them to one another. For instance, examples of genome-wide analyses are highlighted in several chapters to convey the practicality and usefulness of this approach, and the chapters on splicing and nuclear transport both include small sections that link these activities to other nuclear processes that have been discussed. It is important to note, however, that a complete understanding of many of the sections will require prior knowledge of fundamental genetic principles and molecular biology techniques; for this reason, the book may be better suited to the more advanced reader. The Yeast Nucleus is designed to stimulate thinking - not only about the similarities and differences between the budding and fission yeasts, but about whether comparable mechanisms might be used in other organisms as well. To achieve this goal, it goes beyond a comparative analysis of the two yeasts, and draws parallels with bacteriophage, viral and a variety of metazoan systems when applicable. The result is a well-integrated view that succeeds in providing a foundation for provoking thought about the unity of basic biological mechanisms. Moreover, each chapter concludes with an insightful look at the future direction of the field. In these regards, this publication will serve as a fabulous guidebook for experts as well as students.


2007 ◽  
Vol 27 (19) ◽  
pp. 6832-6841 ◽  
Author(s):  
Yi Jin ◽  
Amy M. Rodriguez ◽  
Julie D. Stanton ◽  
Ana A. Kitazono ◽  
John J. Wyrick

ABSTRACT The methylation of specific lysine residues in histone H3 is integral to transcription regulation; however, little is known about how combinations of methylated lysine residues act in concert to regulate genome-wide transcription. We have systematically mutated methylated histone lysine residues in yeast and found that the triple mutation of H3K4, H3K36, and H3K79 to arginine (H3 K4,36,79R) is lethal. The histone H3 K4,36,79R mutant causes a mitotic cell cycle delay and a progressive transcription defect that initiates in telomere regions and then spreads into the chromosome. This effect is mediated by the silent information regulator (SIR) silencing complex, as we observe increased binding of the SIR complex to genomic regions adjacent to yeast telomeres in the H3 K4,36,79R mutant and deletion of SIR2, SIR3, or SIR4 rescues the lethal phenotype. Curiously, a yeast strain in which the histone methyltransferase genes are simultaneously deleted is viable. Indeed, deletion of the histone methyltransferase genes can suppress the H3 K4,36,79R lethal phenotype. These and other data suggest that the cause of lethality may in part be due to the association of histone methyltransferase enzymes with a histone substrate that cannot be methylated.


2021 ◽  
Vol 8 ◽  
Author(s):  
Benjamin Groth ◽  
Padmaja Venkatakrishnan ◽  
Su-Ju Lin

Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite with wide-ranging and significant roles in the cell. Defects in NAD+ metabolism have been associated with many human disorders; it is therefore an emerging therapeutic target. Moreover, NAD+ metabolism is perturbed during colonization by a variety of pathogens, either due to the molecular mechanisms employed by these infectious agents or by the host immune response they trigger. Three main biosynthetic pathways, including the de novo and salvage pathways, contribute to the production of NAD+ with a high degree of conservation from bacteria to humans. De novo biosynthesis, which begins with l-tryptophan in eukaryotes, is also known as the kynurenine pathway. Intermediates of this pathway have various beneficial and deleterious effects on cellular health in different contexts. For example, dysregulation of this pathway is linked to neurotoxicity and oxidative stress. Activation of the de novo pathway is also implicated in various infections and inflammatory signaling. Given the dynamic flexibility and multiple roles of NAD+ intermediates, it is important to understand the interconnections and cross-regulations of NAD+ precursors and associated signaling pathways to understand how cells regulate NAD+ homeostasis in response to various growth conditions. Although regulation of NAD+ homeostasis remains incompletely understood, studies in the genetically tractable budding yeast Saccharomyces cerevisiae may help provide some molecular basis for how NAD+ homeostasis factors contribute to the maintenance and regulation of cellular function and how they are regulated by various nutritional and stress signals. Here we present a brief overview of recent insights and discoveries made with respect to the relationship between NAD+ metabolism and selected human disorders and infections, with a particular focus on the de novo pathway. We also discuss how studies in budding yeast may help elucidate the regulation of NAD+ homeostasis.


Genetics ◽  
1989 ◽  
Vol 122 (2) ◽  
pp. 317-330 ◽  
Author(s):  
P McGraw ◽  
S A Henry

Abstract We report the isolation of two new opi3 mutants by EMS mutagenesis, and construction of an insertion allele in vitro using the cloned gene. We have demonstrated that the opi3 mutations cause a deficiency in the two terminal phospholipid N-methyltransferase (PLMT) activities required for the de novo synthesis of PC (phosphatidylcholine). The opi3 mutants, under certain growth conditions, produce membrane virtually devoid of PC although, surprisingly, none of the mutants displays a strict auxotrophic requirement for choline. Although the opi3 mutants grow without supplements, we have shown that the atypical membrane affects the ability of the mutant strains to initiate log phase growth and to sustain viability at stationary phase. The commencement of log phase growth is enhanced by addition of choline or to a lesser extent DME (dimethylethanolamine), and retarded by addition of MME (monomethylethanolamine). The mutant cells lose viability at the stationary phase of the cell cycle in the absence of DME or choline, and are also temperature sensitive for growth at 37 degrees especially in media containing MME. These growth defects have been correlated to the presence of specific phospholipids in the membrane. The opi3 growth defects are suppressed by an unusual mutation in the phospholipid methylation pathway that perturbs the N-methyltransferase (PEMT) activity immediately preceding the reactions affected by the opi3 lesion. We believe this mutation, cho2-S, alters the substrate specificity of the PEMT. A secondary effect of opi3 mutations is disruption of the cross pathway regulation of the synthesis of the PI (phosphatidylinositol) precursor inositol. Synthesis of inositol is controlled through regulation of the INO1 gene which encodes inositol-1-phosphate synthase. This highly regulated gene is expressed constitutively in opi3 mutants. We have used the opi3 strains to demonstrate that synthesis of either PC or PD (phosphatidyldimethylethanolamine) will restore normal regulation of the INO1 gene.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1390-1390
Author(s):  
Takuji Yamauchi ◽  
Kohta Miyawaki ◽  
Yuichiro Semba ◽  
Fumihiko Nakao ◽  
Takeshi Sugio ◽  
...  

Progress has been made in deciphering molecular mechanisms underlying AML pathogenesis due in part to near-complete understanding of AML genomes. However, AML is yet a devastating disease with a long-term survival rate of less than 30%, underscoring an urgent need for the development of additional therapeutic modalities. To identify novel targets for AML therapy, we performed genome-wide CRISPR-Cas9 dropout screens employing two mouse AML cell lines (CALM/AF10 and MLL/AF9), followed by a second screen in vivo. These two cell lines, which we established, harbor wild-type (WT) Trp53with normal karyotype, enabling us to interpret screening results more easily due to a "clean" genetic background. We then validated our findings using human AML cell lines and patient-derived xenograft (PDX) models (Yamauchi et al. Cancer Cell 2018). In the current study, we assessed the screening results furtherusing MAGeCK MLE program (Li et al. Genome Biology 2015)and the DepMap (https://depmap.org/), a publicly available genome-wide CRISPR-Cas9 screen datasets of cancer cell lines including 15 human AML cell lines. We show that PAICS (Phosphoribosylaminoimidazole carboxylase), which encodes an enzyme involved in de novo purine biosynthesis, is a molecule essential for AML cell survival. MRT252040, a newly-developed PAICS inhibitor (PAICSi), efficiently killed AML cell lines with different genetic backgrounds and significantly prolonged survival of AML PDX models. Furthermore, we investigated the mechanism action of PAICSi employing additional functional screens: CRISPR-Cas9 mutagenesis scan of all Paicscoding exons and a genome-wide CRISPR/Cas9 dropout screen in the presence of PAICSi. Read counts for each Paics-targeted single-guide RNA (sgRNA) significantly decreased in vitro (AML cell lines) and in vivo (mouse AML model). We then assessed the functional significance of PAICS inhibition in AML cell survival via shRNA-mediated PAICSknockdown. AML cells expressing PAICS shRNA exhibited a proliferative disadvantage compared to non-transduced cells or those expressing scrambled shRNA, indicating a toxic effect of PAICS depletion in AML cells. We next asked whether inhibition of PAICS enzymatic activity affects AML cell proliferation and/or apoptosis using PAICSi. We assessed AML growth rate, cell cycle status and apoptosis and found that inhibition of PAICS enzymatic activity delays AML cell proliferation via inducing cell cycle arrest and apoptosis. As expected, CRISPR-Cas9 mutagenesis scan showed that sgRNAs targeting the exonic regions relevant to PAICS enzymatic activity were significantly decreased after the 16-day incubation. We next performed genome-wide CRISPR-Cas9 screens in the presence of PAICSi, followed by second screens using a small-scale sgRNA library containing 8-10 sgRNAs per candidate gene.We identified genes potentially involved in PAICSi resistance as well as those whose loss are synthetic lethal to PAICS inhibition. X-box-binding protein 1 (Xbp1) was among the top hits in the genes relevant to PAICSi resistance genes, and sgRNAs targeting Xbp1significantly enriched in the presence of PAICSi. In contrast, sgRNAs targeting Slc43a3or Hprt, both of which are implicated in the purine salvage pathway, were significantly dropped-out, indicating that PAICSi-mediated anti-leukemia effects can be enhanced upon concurrentinhibition of the purine salvage pathway. Finally, we explored potential anti-leukemia effects of PAICSi in vivo using AML PDX models established from two human AML lines. PAICSi exhibited anti-leukemic activity, as evidenced by the lower leukemia burden in peripheral blood and bone marrow of PAICSi-treated mice. They survived significantly longer than vehicle-treated mice, indicative of therapeutic efficacy of PAICSimonotherapy against AML in vivo. In summary, we identified PAICS as an essential gene for AML cell survival. We propose that pharmacological targeting of the de-novo purine synthesis pathway via PAICSi is a potential therapeutic strategy for AML therapy. Disclosures Akashi: Celgene, Kyowa Kirin, Astellas, Shionogi, Asahi Kasei, Chugai, Bristol-Myers Squibb: Research Funding; Sumitomo Dainippon, Kyowa Kirin: Consultancy.


2016 ◽  
Vol 43 (7) ◽  
pp. 451-465 ◽  
Author(s):  
Yi-Min Duan ◽  
Bo-O. Zhou ◽  
Jing Peng ◽  
Xia-Jing Tong ◽  
Qiong-Di Zhang ◽  
...  

2017 ◽  
Author(s):  
Krzysztof Kuchta ◽  
Joanna Towpik ◽  
Anna Biernacka ◽  
Jan Kutner ◽  
Andrzej Kudlicki ◽  
...  

AbstractProtein levels are most relevant physiologically, but measuring them genome-wide remains a challenge. In contrast, mRNA levels are much easier and less expensive to measure globally. Therefore, RNA levels are typically used to infer the corresponding protein levels. The steady-state condition (assumption that protein levels remain constant) is typically used to calculate protein abundances, as it is mathematically very convenient, even though it is often clear that it is not satisfied for proteins of interest. Here, we propose a simple, yet very effective, method to estimate genome wide protein abundances, which does not require the assumption that protein levels remain constant, and thus allows us to also predict proteome dynamics. Instead, we assume that the system returns to the baseline at the end of experiments; such an assumption is satisfied in many time-course experiments and in all periodic conditions (e.g. cell cycle). The approach only requires availability of gene expression and protein half-life data. As proof-of-concept, we calculated the predicted proteome dynamics for the budding yeast proteome during the cell cycle, which can be conveniently browsed online. The approach was validated experimentally by verifying that the predicted protein concentration changes were consistent with measurements for all proteins tested. Additionally, if proteomic data are also available, our approach can be used to predict how half-lives change in response to posttranslational regulation. We illustrated this application of our method withde novoprediction of changes in the degradation rate of Clb2 in response to post-translational modifications. The predicted changes were consistent with earlier observations in the literature.


1990 ◽  
Vol 68 (2) ◽  
pp. 427-435 ◽  
Author(s):  
Gerald C. Johnston ◽  
Richard A. Singer

Mutations in the budding yeast Saccharomyces cerevisiae define regulatory activities both for the mitotic cell cycle and for resumption of proliferation from the quiescent stationary-phase state. In each case, the regulation of proliferation occurs in the prereplicative interval that precedes the initiation of DNA replication. This regulation is particularly responsive to the nutrient environment and the biosynthetic capacity of the cell. Mutations in components of the cAMP-mediated effector pathway and in components of the biosynthetic machinery itself affect regulation of proliferation within the mitotic cell cycle. In the extreme case of nutrient starvation, cells cease proliferation and enter stationary phase. Mutations in newly defined genes prevent stationary-phase cells from reentering the mitotic cell cycle, but have no effect on proliferating cells. Thus stationary phase represents a unique developmental state, with requirements to resume proliferation that differ from those for the maintenance of proliferation in the mitotic cell cycle.Key words: Saccharomyces cerevisiae, cell cycle, growth, cAMP, stationary phase.


2018 ◽  
Author(s):  
Jackie Lang ◽  
Adrienne Barber ◽  
Sue Biggins

ABSTRACTChromosome segregation depends on the kinetochore, the machine that establishes force-bearing attachments between DNA and spindle microtubules. Kinetochores are formed every cell cycle via a highly regulated process that requires coordinated assembly of multiple subcomplexes on specialized chromatin. To elucidate the underlying mechanisms, we developed an assay to assemble kinetochores de novo using centromeric DNA and budding yeast extracts. Assembly is enhanced by mitotic phosphorylation of the Dsn1 kinetochore protein and generates kinetochores capable of binding microtubules. We used this assay to investigate why kinetochores recruit the microtubule-binding Ndc80 complex via two receptors: the Mis12 complex and CENP-T. Although the CENP-T pathway is non-essential in yeast, we demonstrate that it becomes essential for viability and Ndc80c recruitment when the Mis12 pathway is crippled by defects in Dsn1 phosphorylation. Assembling kinetochores de novo in yeast extracts provides a powerful and genetically tractable method to elucidate critical regulatory events in the future.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Jackie Lang ◽  
Adrienne Barber ◽  
Sue Biggins

Chromosome segregation depends on the kinetochore, the machine that establishes force-bearing attachments between DNA and spindle microtubules. Kinetochores are formed every cell cycle via a highly regulated process that requires coordinated assembly of multiple subcomplexes on specialized chromatin. To elucidate the underlying mechanisms, we developed an assay to assemble kinetochores de novo using centromeric DNA and budding yeast extracts. Assembly is enhanced by mitotic phosphorylation of the Dsn1 kinetochore protein and generates kinetochores capable of binding microtubules. We used this assay to investigate why kinetochores recruit the microtubule-binding Ndc80 complex via two receptors: the Mis12 complex and CENP-T. Although the CENP-T pathway is non-essential in yeast, we demonstrate that it becomes essential for viability and Ndc80c recruitment when the Mis12 pathway is crippled by defects in Dsn1 phosphorylation. Assembling kinetochores de novo in yeast extracts provides a powerful and genetically tractable method to elucidate critical regulatory events in the future.


Sign in / Sign up

Export Citation Format

Share Document