scholarly journals De NovoRNA Synthesis by RNA-Dependent RNA Polymerase Activity of Telomerase Reverse Transcriptase

2016 ◽  
Vol 36 (8) ◽  
pp. 1248-1259 ◽  
Author(s):  
Yoshiko Maida ◽  
Mami Yasukawa ◽  
Kenkichi Masutomi

RNA-dependent RNA polymerase (RdRP) plays key roles in RNA silencing to generate double-stranded RNAs. In model organisms, such asCaenorhabditis elegansandNeurospora crassa, two types of small interfering RNAs (siRNAs), primary siRNAs and secondary siRNAs, are expressed; RdRP produces secondary siRNAsde novo, without using either Dicer or primers, while primary siRNAs are processed by Dicer. We reported that human telomerase reverse transcriptase (TERT) has RdRP activity and produces endogenous siRNAs in a Dicer-dependent manner. However,de novosynthesis of siRNAs by human TERT has not been elucidated. Here we show that the TERT RdRP generates short RNAs that are complementary to template RNAs and have 5′-triphosphorylated ends, which indicatesde novosynthesis of the RNAs. In addition, we confirmed short RNA synthesis by TERT in several human carcinoma cell lines and found that TERT protein levels are positively correlated with RdRP activity.

2000 ◽  
Vol 74 (2) ◽  
pp. 851-863 ◽  
Author(s):  
Guangxiang Luo ◽  
Robert K. Hamatake ◽  
Danielle M. Mathis ◽  
Jason Racela ◽  
Karen L. Rigat ◽  
...  

ABSTRACT Hepatitis C virus (HCV) NS5B protein possesses an RNA-dependent RNA polymerase (RdRp) activity, a major function responsible for replication of the viral RNA genome. To further characterize the RdRp activity, NS5B proteins were expressed from recombinant baculoviruses, purified to near homogeneity, and examined for their ability to synthesize RNA in vitro. As a result, a highly active NS5B RdRp (1b-42), which contains an 18-amino acid C-terminal truncation resulting from a newly created stop codon, was identified among a number of independent isolates. The RdRp activity of the truncated NS5B is comparable to the activity of the full-length protein and is 20 times higher in the presence of Mn2+ than in the presence of Mg2+. When a 384-nucleotide RNA was used as the template, two major RNA products were synthesized by 1b-42. One is a complementary RNA identical in size to the input RNA template (monomer), while the other is a hairpin dimer RNA synthesized by a “copy-back” mechanism. Substantial evidence derived from several experiments demonstrated that the RNA monomer was synthesized through de novo initiation by NS5B rather than by a terminal transferase activity. Synthesis of the RNA monomer requires all four ribonucleotides. The RNA monomer product was verified to be the result of de novo RNA synthesis, as two expected RNA products were generated from monomer RNA by RNase H digestion. In addition, modification of the RNA template by the addition of the chain terminator cordycepin at the 3′ end did not affect synthesis of the RNA monomer but eliminated synthesis of the self-priming hairpin dimer RNA. Moreover, synthesis of RNA on poly(C) and poly(U) homopolymer templates by 1b-42 NS5B did not require the oligonucleotide primer at high concentrations (≥50 μM) of GTP and ATP, further supporting a de novo initiation mechanism. These findings suggest that HCV NS5B is able to initiate RNA synthesis de novo.


1999 ◽  
Vol 73 (2) ◽  
pp. 1649-1654 ◽  
Author(s):  
Eric Ferrari ◽  
Jacquelyn Wright-Minogue ◽  
Jane W. S. Fang ◽  
Bahige M. Baroudy ◽  
Johnson Y. N. Lau ◽  
...  

ABSTRACT Production of soluble full-length nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) has been shown to be problematic and requires the addition of salts, glycerol, and detergents. In an effort to improve the solubility of NS5B, the hydrophobic C terminus containing 21 amino acids was removed, yielding a truncated NS5B (NS5BΔCT) which is highly soluble and monodispersed in the absence of detergents. Fine deletional analysis of this region revealed that a four-leucine motif (LLLL) in the hydrophobic domain is responsible for the solubility profile of the full-length NS5B. Enzymatic characterization revealed that the RNA-dependent RNA polymerase (RdRp) activity of this truncated NS5B was comparable to those reported previously by others. For optimal enzyme activity, divalent manganese ions (Mn2+) are preferred rather than magnesium ions (Mg2+), whereas zinc ions (Zn2+) inhibit the RdRp activity. Gliotoxin, a known poliovirus 3D RdRp inhibitor, inhibited HCV NS5B RdRp in a dose-dependent manner. Kinetic analysis revealed that HCV NS5B has a rather low processivity compared to those of other known polymerases.


2006 ◽  
Vol 81 (4) ◽  
pp. 1858-1871 ◽  
Author(s):  
Stephen W. B. Fullerton ◽  
Martina Blaschke ◽  
Bruno Coutard ◽  
Julia Gebhardt ◽  
Alexander Gorbalenya ◽  
...  

ABSTRACT Sapoviruses are one of the major agents of acute gastroenteritis in childhood. They form a tight genetic cluster (genus) in the Caliciviridae family that regroups both animal and human pathogenic strains. No permissive tissue culture has been developed for human sapovirus, limiting its characterization to surrogate systems. We report here on the first extensive characterization of the key enzyme of replication, the RNA-dependent RNA polymerase (RdRp) associated with the 3Dpol-like protein. Enzymatically active sapovirus 3Dpol and its defective mutant were expressed in Escherichia coli and purified. The overall structure of the sapovirus 3Dpol was determined by X-ray crystallography to 2.32-Å resolution. It revealed a right hand fold typical for template-dependent polynucleotide polymerases. The carboxyl terminus is located within the active site cleft, as observed in the RdRp of some (norovirus) but not other (lagovirus) caliciviruses. Sapovirus 3Dpol prefers Mn2+ over Mg2+ but may utilize either as a cofactor in vitro. In a synthetic RNA template-dependent reaction, sapovirus 3Dpol synthesizes a double-stranded RNA or labels the template 3′ terminus by terminal transferase activity. Initiation of RNA synthesis occurs de novo on heteropolymeric templates or in a primer-dependent manner on polyadenylated templates. Strikingly, this mode of initiation of RNA synthesis was also described for norovirus, but not for lagovirus, suggesting structural and functional homologies in the RNA-dependent RNA polymerase of human pathogenic caliciviruses. This first experimental evidence makes sapovirus 3Dpol an attractive target for developing drugs to control calicivirus infection in humans.


2002 ◽  
Vol 76 (4) ◽  
pp. 1707-1717 ◽  
Author(s):  
K. S. Rajendran ◽  
J. Pogany ◽  
P. D Nagy

ABSTRACT Turnip crinkle virus (TCV) is a small, plus-sense, single-stranded RNA virus of plants. A virus-coded protein, p88, which is required for replication has been expressed and purified from Escherichia coli. In vitro assays revealed that the recombinant p88 has an RNA-dependent RNA polymerase (RdRp) activity and can also bind to RNA. Deletion of the N-terminal region in p88 resulted in a more active RdRp, while further deletions abolished RdRp activity. Comparison of the E. coli-expressed p88, the N-terminal deletion mutant of p88, and a TCV RdRp preparation obtained from infected plants revealed that these preparations show remarkable similarities in RNA template recognition and usage. Both the recombinant and the plant TCV RdRp preparations are capable of de novo initiation on both plus- and minus-strand satC and satD templates, which are small parasitic RNAs associated with TCV infections. In addition, these RdRp preparations can efficiently recognize the related Tomato bushy stunt virus promoter sequences, including the minus- and plus-strand initiation promoters. Heterologous viral and artificial promoters are recognized poorly by the recombinant and the plant TCV RdRps. Further comparison of the single-component recombinant TCV RdRp and the multicomponent plant TCV RdRp will help dissect the functions of various components of the TCV replicase.


2012 ◽  
Vol 86 (18) ◽  
pp. 10138-10149 ◽  
Author(s):  
Chennareddy V. Subba-Reddy ◽  
Muhammad Amir Yunus ◽  
Ian G. Goodfellow ◽  
C. Cheng Kao

Using a cell-based assay for RNA synthesis by the RNA-dependent RNA polymerase (RdRp) of noroviruses, we previously observed that VP1, the major structural protein of the human GII.4 norovirus, enhanced the GII.4 RdRp activity but not that of the related murine norovirus (MNV) or other unrelated RNA viruses (C. V. Subba-Reddy, I. Goodfellow, and C. C. Kao, J. Virol. 85:13027–13037, 2011). Here, we examine the mechanism of VP1 enhancement of RdRp activity and the mechanism of mouse norovirus replication. We determined that the GII.4 and MNV VP1 proteins can enhance cognate RdRp activities in a concentration-dependent manner. The VP1 proteins coimmunoprecipitated with their cognate RdRps. Coexpression of individual domains of VP1 with the viral RdRps showed that the VP1 shell domain (SD) was sufficient to enhance polymerase activity. Using SD chimeras from GII.4 and MNV, three loops connecting the central β-barrel structure were found to be responsible for the species-specific enhancement of RdRp activity. A differential scanning fluorimetry assay showed that recombinant SDs can bind to the purified RdRpsin vitro. An MNV replicon with a frameshift mutation in open reading frame 2 (ORF2) that disrupts VP1 expression was defective for RNA replication, as quantified by luciferase reporter assay and real-time quantitative reverse transcription-PCR (qRT-PCR).Trans-complementation of VP1 or its SD significantly recovered the VP1 knockout MNV replicon replication, and the presence or absence of VP1 affected the kinetics of viral RNA synthesis. The results document a regulatory role for VP1 in the norovirus replication cycle, further highlighting the paradigm of viral structural proteins playing additional functional roles in the virus life cycle.


2006 ◽  
Vol 87 (2) ◽  
pp. 347-356 ◽  
Author(s):  
Ming Xiao ◽  
Huaibo Li ◽  
Yujing Wang ◽  
Xiaohui Wang ◽  
Wei Wang ◽  
...  

To investigate RNA-dependent RNA polymerase (RdRp) further, mutational analysis of the N-terminal domain of the NS5B protein of Classical swine fever virus was performed. Results show that the N-terminal domain (positions 1–300) of the protein might be divided artificially into four different regions, N1–N4. The N1 region (positions 1–61) contained neither conserved lysine nor conserved arginine residues. NS5B protein with deletion of the N1 region has the capacity for elongative RNA synthesis, but not for de novo RNA synthesis on natural templates. All substitutions of the conserved lysines and arginines in the N2 region (positions 63–216) destroyed RdRp activity completely. Substitutions of the conserved arginines in the N3 region (positions 217–280) seriously reduced RdRp activity. However, all substitutions of the conserved lysines in this region enhanced RNA synthesis and made the mutants synthesize RNA on any template. Substitutions of the conserved arginines in the N4 region (positions 281–300) reduced elongative synthesis and destroyed de novo RNA synthesis. In contrast, substitutions of lysines in this region did not affect RdRp activity significantly. These data indicate that the N3 region might be related to the enzymic specificity for templates, and the conserved lysines and arginines in different regions have different effects on RdRp activity. In combination with the published crystal structure of bovine viral diarrhea virus NS5B, these results define the important role of the N-terminal domain of NS5B for template recognition and de novo RNA synthesis.


2020 ◽  
Vol 20 (6) ◽  
pp. 498-507 ◽  
Author(s):  
Connor A.H. Thompson ◽  
Judy M.Y. Wong

Increasing evidence from research on telomerase suggests that in addition to its catalytic telomere repeat synthesis activity, telomerase may have other biologically important functions. The canonical roles of telomerase are at the telomere ends where they elongate telomeres and maintain genomic stability and cellular lifespan. The catalytic protein component Telomerase Reverse Transcriptase (TERT) is preferentially expressed at high levels in cancer cells despite the existence of an alternative mechanism for telomere maintenance (alternative lengthening of telomeres or ALT). TERT is also expressed at higher levels than necessary for maintaining functional telomere length, suggesting other possible adaptive functions. Emerging non-canonical roles of TERT include regulation of non-telomeric DNA damage responses, promotion of cell growth and proliferation, acceleration of cell cycle kinetics, and control of mitochondrial integrity following oxidative stress. Non-canonical activities of TERT primarily show cellular protective effects, and nuclear TERT has been shown to protect against cell death following double-stranded DNA damage, independent of its role in telomere length maintenance. TERT has been suggested to act as a chromatin modulator and participate in the transcriptional regulation of gene expression. TERT has also been reported to regulate transcript levels through an RNA-dependent RNA Polymerase (RdRP) activity and produce siRNAs in a Dicer-dependent manner. At the mitochondria, TERT is suggested to protect against oxidative stress-induced mtDNA damage and promote mitochondrial integrity. These extra-telomeric functions of TERT may be advantageous in the context of increased proliferation and metabolic stress often found in rapidly-dividing cancer cells. Understanding the spectrum of non-canonical functions of telomerase may have important implications for the rational design of anti-cancer chemotherapeutic drugs.


2014 ◽  
Vol 82 (10) ◽  
pp. 4405-4413 ◽  
Author(s):  
Sarah E. Davis ◽  
Alex Hopke ◽  
Steven C. Minkin ◽  
Anthony E. Montedonico ◽  
Robert T. Wheeler ◽  
...  

ABSTRACTThe virulence ofCandida albicansin a mouse model of invasive candidiasis is dependent on the phospholipids phosphatidylserine (PS) and phosphatidylethanolamine (PE). Disruption of the PS synthase geneCHO1(i.e.,cho1Δ/Δ) eliminates PS and blocks thede novopathway for PE biosynthesis. In addition, thecho1Δ/Δ mutant's ability to cause invasive disease is severely compromised. Thecho1Δ/Δ mutant also exhibits cell wall defects, and in this study, it was determined that loss of PS results in decreased masking of cell wall β(1-3)-glucan from the immune system. In wild-typeC. albicans, the outer mannan layer of the wall masks the inner layer of β(1-3)-glucan from exposure and detection by innate immune effector molecules like the C-type signaling lectin Dectin-1, which is found on macrophages, neutrophils, and dendritic cells. Thecho1Δ/Δ mutant exhibits increases in exposure of β(1-3)-glucan, which leads to greater binding by Dectin-1 in both yeast and hyphal forms. The unmasking of β(1-3)-glucan also results in increased elicitation of TNF-α from macrophages in a Dectin-1-dependent manner. The role of phospholipids in fungal pathogenesis is an emerging field, and this is the first study showing that loss of PS inC. albicansresults in decreased masking of β(1-3)-glucan, which may contribute to our understanding of fungus-host interactions.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1601-C1601
Author(s):  
Ji-Hye Lee ◽  
Yeon Bin Chung ◽  
Jong Hyeon Seok ◽  
Kang Rok Han ◽  
Sella Kim ◽  
...  

Norovirus is the leading cause of epidemic acute, nonbacterial gastroenteritis, and adopts de novo and VPg (Virion protein genome linked)-primed RNA synthesis by RNA-dependent RNA polymerase (RdRp). To understand the interaction between RdRp and VPg in replication of murine norovirus-1 (MNV-1), we determined the crystal structure of MNV-1 RdRp-VPg(1-73)-RNA complex. VPg was bound to the base of the palm domain and the tip of the fingers domain of RdRp simultaneously, but RNA template could not be modeled. The binding affinity constants (Kd) for RdRp-VPg was 3.7411.57 nM and VPg(1-73) showed approximately 90-fold less affinity than that of full-length VPg. In addition to this multiple binding mode, VPg enhanced the interactions of RdRp hexamers, leading to the formation of high-order multimers or tubular fibrils with significantly increased polymerase activity, confirmed by electron microscopic and biochemical studies. Our data indicated that MNV-1 VPg with helical structure was bound to RdRp at multiple sites and induces RdRp multimerization in viral replication. The multimers of RdRp-VPg-RNA can provide a mechanistic understanding of viral polymerase multimeric arrays and a new tool for development of antivirals to control norovirus outbreaks. This work was supported by a grant of the Korea Healthcare Technology R&D Project, Ministry of Health, Welfare and Family Affairs (A085119 K.H.K), Basic Science Research Program through the National Research Foundation (NRF-2013R1A1A2064940, L.J-H), Korea University Grant (L.J-H), and the BK21 plus program of the Ministry of Education, Korea.


Sign in / Sign up

Export Citation Format

Share Document